Курсовая работа: Диференціальні рівняння
Гімназія №2
Кафедра природничо-математичних наук
Диференціальні рівняння
Курсова робота
учня 11-Б класу
Біленка Анатолія
Керівник роботи
Б.Ю. Гаузнер
2001 рік
План
1. Вступ | |
1. | Поява диференціальних рівнянь |
2. | Історична довідка |
2. Основна частина | |
І | Рівняння показового росту |
1. | Швидкість прямолінійного руху |
2. | Радіоактивний розпад |
3. | Поглинання світла |
4. | Концентрація розчину |
ІІ | Лінійне диференціальне рівняння першого порядку |
1. | Охолодження тіла |
2. | Найпростіші електричні ланцюги |
3. | Падіння тіл |
ІІІ | Гармонічні коливання (незатухаючі) |
3. Висновки | |
4. Список використаної літератури |
1. Вступ.
1. Поява диференціальних рівнянь.
Під час розв'язування багатьох практичних задач доводиться знаходити невідому функцію з рівняння, яке містить поряд з цією невідомою функцією її похідні.
Рівняння, яке містить невідому функцію та її похідні, називається диференціальним. Порядок найвищої похідної, яка входить до диференціального рівняння, називається його порядком. Наприклад, рівняння
y ''+ 4у = 0 є диференціальним рівнянням другого порядку.
Якщо до рівняння входить незалежна змінна, невідома функція і її похідна, то це рівняння називається диференціальним рівнянням першого порядку. Якщо, крім того, в рівняння входить похідна другого порядку від шуканої функції, то рівняння називається диференціальним рівнянням другого порядку і т. д.
Будь-яку функцію, що задовольняє диференціальне рівняння, називають розв'язком, або інтегралом цього рівняння, а розв'язування диференціального рівняння - інтегруванням. Наприклад, функція у = e x є розв'язком диференціального рівняння у — у' = 0, бо (є x )' = e x .
Функція у =cosx є розв'язком диференціального рівняння у" + у == 0.
Справді, для функції у =cosx , маємо:
у" = -cosx . Підставляючи значення у" в рівняння y" + у = 0, дістанемо - cosx + cosx = 0.
Аналогічно можна переконатися, що функція у =A sinx +В cosx , де А і В — довільні сталі, також є розв'язком даного рівняння.
Розглянемо задачу геометричного змісту. Розв‘язання цієї задачі допоможе з‘ясувати зміст довільних сталих.
Задача. Знайти рівняння кривої, що проходить через точку М (1;2) , якщо кутовий коефіцієнт проведеної до нього дотичної дорівнює 4 x 3 .
Розв‘язання. У цій задачі треба знайти формулу, що задає функцію F , похідною якої є функція f ( x ) = 4 x 3 , тобто треба знайти первісну функції y =4 x 3 . Крім того , відомо, що графік шуканої функції проходить через задану точку М (1;2) .
Множина первісних всіх функцій для функції y =4 x 3 має вигляд F ( x ) = x 4 +С, де С – довільна стала. Щоб виділити з цієї множини первісну, графік якої проходить через точку М (1;2) , враховується, що коли x =1 , значення функції F (1) має дорівнювати 2. Підставляючи у рівність F ( x ) = x 4 +С замість x число1, а замість F ( x ) – число 2, дістанемо 2 = 1 + С , звідки С=1. Підставляючи значення С в ту саму рівність дістанемо, що F ( x ) = x 4 +1 – шукане рівняння кривої, яка проходить через точку М (1;2) .
Отже визначені довільні сталі значно звужують множину розв‘язків і допомагають знайти один – потрібний для даної задачі .
Загальним розв'язком даного диференціального рівняння називається розв'язок (якщо він існує), у якого число довільних сталих дорівнює порядкові рівняння.
Розв'язок диференціального рівняння при певних, значеннях довільних сталих називається окремим розв'язком цього диференціального рівняння.
Так, у розглянутому вище прикладі у" + у = 0 розв'язок у = A sinx +В cos x є загальним, а розв'язок у =cosx - окремим.
На практиці здебільшого окремий розв'язок конкретного диференціального рівняння знаходять із загального розв'язку, виходячи з деяких умов, яким має задовольняти шуканий окремий розв'язок. Умови, яким має задовольняти окремий розв'язок даного диференціального рівняння, називають початковими умовами.
Задача відшукання конкретного окремого розв'язку даного диференціального рівняння за початковими умовами називається, задачею Коші.
Приклади. Знайти окремий розв'язок диференціального рівняння
уy '+2х=0. (1)
яке задовольняє початковим умовам: у = 4, х = 3, якщо загальний розв'язок даного рівняння задано у вигляді
--> ЧИТАТЬ ПОЛНОСТЬЮ <--