Курсовая работа: Динамические системы в плоской области

т. е. одновременно

и это, очевидно, означало бы, что точка х*, у* является состоянием равновесия. Но состояние равновесия само является отдельной траекторией, и в силу теоремы 3 точка М* (х*, у*) не может принадлежать отличной от состояния равновесия траектории L.

Рассмотрим вопрос о том, могут ли быть у траектории, отличной от состояния равновесия, «самопересечения», т. е. возможно ли, чтобы существовали значения t1 и t2 , t1 t2 такие, чтобы соответствующие им точки траектории совпадали.

Ответ на этот вопрос дается следующей леммой:

Лемма 7. Пусть траектория L, соответствующая решению

( < t< T),(17)

отлична от состояния равновесия, и пусть существуют значения t, t1 и t2 ( < t1 < t2 < T) такие, что


Тогда решение (17) определено при всех значениях

t (т. е. )

функции , являются периодическими функциями t, а соответствующая траектория—простой гладкой замкнутой кривой.

Доказательство. Пусть

(18)

Рассмотрим наряду с решением (17) решение

(19)

определенное на интервале

( — С, Т — С)

где С = t2 — t1 (см. лемму 1).

Из равенств (18) следует, что решения (17) и (19) удовлетворяют одним и тем же начальным условиям (при t= t1 , x = х0 , у =у0 ). Но тогда эти решения совпадают, а следовательно, совпадают интервалы значений t, на которых они определены. Но интервалы (, Т) и ( — С, Т — С) при С0 могут совпадать лишь в том случае, когда =-, Т =+.

Таким образом, мы показали, что решения (17) и (19) определены для всех t( < t< ). Далее, из совпадения решений (17) и (19) следует, что при всех t (— < t< )

(20)


где C = t2 — t1 >0. Это, очевидно, означает, что функции (t) и (t)— периодические функции с общим периодом 0 = t2 — t1 . Пусть

)(21)

— наименьшее положительное число, при котором имеют место равенства

(22)

Такое число непременно существует. Действительно, в противном случае можно было бы указать последовательность положительных чисел {} таких, что

и

Очевидно, тогда при любом nи любом целом |k|

К-во Просмотров: 340
Бесплатно скачать Курсовая работа: Динамические системы в плоской области