Курсовая работа: Дослідження функцій гіпергеометричного рівняння

Введення

У зв'язку із широким розвитком чисельних методів і зростанням ролі чисельного експерименту у великому ступені підвищився інтерес до спеціальних функцій. Це пов'язане із двома обставинами. По-перше, при розробці математичної моделі фізичного явища для з'ясування відносної ролі окремих ефектів вихідну задачу часто доводиться спрощувати для того, щоб можна було одержати рішення в легко аналізованій аналітичній формі. По-друге, при рішенні складних задач на ЕОМ зручно використовувати спрощені задачі для вибору надійних і економічних обчислювальних алгоритмів. Дуже рідко при цьому можна обмежитися задачами, що приводять до елементарних функцій. Крім того, знання спеціальних функцій необхідно для розуміння багатьох важливих питань теоретичної й практичної фізики.

Найбільше часто вживаними функціями є так звані спеціальні функції математичної фізики: класичні ортогональні поліноми (поліноми Якоби, Лагерра, Ермита), циліндричні, сферичні й гіпергеометричні. Теорії цих функцій і їхніх додатків присвячений цілий ряд досліджень.


1. Гіпергеометричне рівняння

1.1 Визначення гіпергеометричного ряду

Гіпергеометричним рядом називається статечної ряд виду

де z – комплексна змінна, , , - параметри, які можуть приймати будь-які речовинні або комплексні значення ( 0,-1,-2,…),і символ позначає величину

==1

Якщо й – нуль або ціле негативне число, ряд обривається на кінцевому числі членів, і сума його являє собою поліном відносно z. За винятком цього випадку, радіус збіжності гіпергеометричного ряду рівняється одиниці, у чому легко переконатися за допомогою ознаки збіжності Даламбера: думаючи

zk

маємо

= ,

коли k , тому гіпергеометричний ряд сходиться при <1 і розходиться при >1.

Сума ряду

F( , , ,z) = , <1 (1.1)

називається гіпергеометричною функцією.

Дане визначення гіпергеометричної функції придатне лише для значень z, що належать колу збіжності, однак надалі буде показано, що існує функція комплексного змінного z, регулярна в площині з розрізом (1, ) яка при <1 збігається з F( , , ,z). Ця функція є аналітичним продовженням F( , , ,z) у розрізану площину й позначається тим же символом.

Щоб виконати аналітичне продовження припустимо спочатку що R( )>R( )>0 і скористаємося інтегральним поданням

(1.2)

k=0,1,2,..

Підставляючи (1.2) в (1.1) знаходимо

F( , , ,z) = = =

причому законність зміни порядку інтегрування й підсумовування випливає з абсолютної збіжності.


Дійсно, при R( )>R( ) >0 і <1

=

= F( , R( ),R( ), )

На підставі відомого біноминального розкладання

=(1-tz)-a (1.3)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 245
Бесплатно скачать Курсовая работа: Дослідження функцій гіпергеометричного рівняння