Курсовая работа: Дослідження функцій гіпергеометричного рівняння

Таким чином, F( , , ,z)= F( +1, +1, +1,z) (2.2)

3. Повторне застосування цієї формули приводить до рівностей

F( , , ,z)= F( +m, +m, +m,z) (2.3)

m=1,2,...

Покладемо надалі для скорочення запису

F( , , ,z)= F,

F( 1, , ,z)= F( 1),

F( , 1, ,z)= F( 1),

F( , , 1,z)= F( 1).

Функції F( 1), F( 1), F( 1) називаються суміжними з F.

4. Ми покажемо, що F і будь-які дві суміжні функції зв'язані між собою рекурентним співвідношенням з коефіцієнтами, що є лінійними функціями змінного z. Як основні співвідношення цього типу можуть бути обрані рівності (2.4), (2.5), (2.6) відповідно.

( - - )F+ (1-z)F( +1)-( - )F( -1)=0,

( - -1)F+ F( +1)-( - 1)F( -1)=0,

(1-z)F- F( -1)+( - )F( +1)=0.

Підставляючи ряд (1.1) в (2.4) маємо (2.4)

( - - )F+ (1-z)F( +1)-( - )F( -1)=

=( - - ) + (1-z) -( -

) =

= {( - - ) + -( - ) -

}zk =

= {( - - )( +k-1)+( +k)( +k-1)-( - )( -1)

( -k-1)k} zk =0,

тому що

z

= =

= ( +1)...( +k-1)

=( +1)...( +k-1)( +k)

=( -1) ( +1)...( +k-2)

= ( +1)…(+k-2)

К-во Просмотров: 249
Бесплатно скачать Курсовая работа: Дослідження функцій гіпергеометричного рівняння