Курсовая работа: Дослідження функцій гіпергеометричного рівняння

тому для F( , , ,z) виходить подання

F( , , ,z)= (1.4)

R( )>R( ) >0 і <1

Покажемо, що інтеграл у правій частині останньої рівності зберігає зміст і представляє регулярну функцію комплексного змінного z у площині з розрізом (1, ).

Для z приналежні області , (R – довільно велике, і довільно малі позитивні числа), і 0 < t < 1 підінтегральне вираження є регулярна функція z і безперервна функція t ; тому досить показати що інтеграл сходиться рівномірно в розглянутій області. Доказ треба з оцінки


(М – верхня границя модуля функції (1-tz)-a , безперервної в замкнутій області

, , 0 t 1)

що показує, збіжність інтеграла буде при R( )>R( ) >0 інтеграл

сходиться

Таким чином, умова <1 в (1.4) може бути відкинуто, і шукане аналітичне продовження гіпергеометричної функції в розрізану площину дається формулою

F( , , ,z)= (1.5)

R( )>R( ) >0;

У загальному випадку, коли параметри мають довільні значення, аналітичне продовження F( , , ,z) площина з розміром (1, ) може бути отримане у формі контурного інтеграла, до якого приводить підсумовування ряду (1.1) за допомогою теорії відрахувань.

Більше елементарний метод продовження, що не дає, однак, можливість одержати в явній формі загальне аналітичне вираження гіпергеометричної функції, полягає у використанні рекурентного співвідношення (1.6)

F( , , ,z) = +

справедливість якого може бути встановлена підстановкою в нього ряду (1.1). Після підстановки й приведення подібних членів коефіцієнт при zk у правій частині (1.6) буде

+ - = = { - - }= = (

Шляхом повторного застосування цієї тотожності можна представити функцію F( , , ,z) з довільними параметрами ( 0,-1,-2,…)у вигляді суми

F( , , ,z)= F( +s, +p, +2p, z) (1.7)

де р – ціле позитивне число ( , , ,z) – поліном відносно z. Якщо вибрати число р досить більшим, так, щоб R( )>-p і R( - )>-p, то аналітичне продовження кожної з функцій F( +s, +p, +2p, z) може бути виконане по формулі (1.5). Підставляючи отримані вираження в (1.7) одержимо функцію, регулярну в площині з розрізом (1, ), що при <1 збігається із сумою гіпергеометричного ряду (1.1) і, отже, є шуканим аналітичним продовженням.

Гіпергеометрична функція F( , , ,z) відіграє важливу роль в аналізі і його додатках. Введення цієї функції дає можливість одержати рішення багатьох цікавих проблем теоретичного й прикладного характеру, до яких, зокрема, ставиться задача конформного відображення трикутника, обмеженого пересічними прямими або дугами окружностей, різні задачі квантової механіки й так далі.

Велика кількість спеціальних функцій може бути виражене через функцію F( , , ,z), що дозволяє розглядати теорію цих функцій як відповідні спеціальні випадки загальної теорії, даної в справжньому пункті.

1.2 Елементарні властивості гіпергеометричної функції

У справжньому розділі ми розглянемо деякі властивості гіпергеометричної функції, які безпосередньо випливають із її визначення за допомогою ряду (1.1).

1. Беручи до уваги, що члени ряду не змінюються при перестановці параметрів і маємо співвідношення симетрії

F( , , ,z)= F( , , ,z), (2.1)

2. Диференціюючи розглянутий ряд по членне, знаходимо

F( , , ,z)= = =

К-во Просмотров: 246
Бесплатно скачать Курсовая работа: Дослідження функцій гіпергеометричного рівняння