Курсовая работа: Электростатика проводников
Abstract
Thereare bases of the electrostatics of conductor considered there. The subject of macroscopic electrodynamic forms the study of electromagnetic fields. Main equations of electrodynamic of utter ambiences are got by means of averaging the equations of the electromagnetic field in emptiness.
Содержание
Введение
1. Электростатическое поле проводников
2. Энергия электростатического поля проводников
3. Проводящий эллипсоид
4. Силы, действующие на проводник
Выводы
Список использованной литературы
Введение
Предмет макроскопической электродинамики составляет изучение электромагнитных полей в пространстве, заполненном веществом. Как и всякая макроскопическая теория, электродинамика оперирует физическими величинами, усредненными по «физически бесконечно малым» элементам объема, не интересуясь микроскопическими колебаниями этих величин, связанными с молекулярным строением вещества. Так. Вместо истинного «микроскопического» значения напряженности электрического поля е рассматривается ее усредненное значение, обозначаемое .
Основные уравнения электродинамики сплошных сред получаются посредством усреднения уравнений электромагнитного поля в пустоте. Такой переход от микро- к макроскопическим уравнениям был впервые произведен Лоренцем (H.A. Lorentz, 1902).
Вид уравнений макроскопической электродинамики и смысл входящих в них величин существенно зависят от физической природы материальной среды, а также от характера изменения поля со временем. Поэтому представляется рациональным производить вывод и исследование этих уравнений для каждой категории физических объектов отдельно.
1. Электростатическое поле проводников
Как известно, в отношении электрических свойств все тела делятся на две категории - проводники и диэлектрики, причем первые отличаются от вторых тем, что всякое электрическое поле вызывает в них движение зарядов - электрический ток.
Начнем с изучения постоянных электрических полей, создаваемых заряженными проводниками (электростатика проводников). Из основного свойства проводников, прежде всего, следует, что в электростатическом случае напряженность электрического поля внутри них должна быть равной нулю. Действительно, отличная от пули напряженность E привела бы к возникновению тока; между тем распространение тока в проводнике связано с диссипацией энергии и потому не может само по себе (без внешних источников энергии) поддерживаться в стационарном состоянии.
Отсюда в свою очередь следует, что все заряды в проводнике должны быть распределены по его поверхности: наличие зарядов в объеме проводника непременно привело бы к возникновению электрического поля в нем.
Задача электростатики проводников сводится к определению электрического поля в пустоте, вне проводников, и к определению распределения зарядов по поверхности проводников.
В точках, не слишком близких к поверхности тела, среднее поле E в пустоте фактически совпадает с истинным полем e. Эти две величины отличаются друг от друга лишь в непосредственной близости к телу. Точные микроскопические уравнения Максвелла в пустоте гласят:
, ,
(h - микроскопическая напряженность магнитного поля). Так как среднее магнитное поле предполагается отсутствующим, то и производная обращается в результате усреднения в нуль
, ,
т. е. является потенциальным полем с потенциалом , связанным с напряженностью соотношением
и удовлетворяющим уравнению Лапласа
.
Граничные условия для поля Е на поверхности проводника следуют из самого уравнения . Выберем ось z по направлению нормали n к поверхности проводника в некоторой его точке. Компонента Ez поля в непосредственной близости к поверхности тела достигает очень больших значений.
Существенно, что если поверхность однородна, производные , вдоль поверхности остаются конечными, несмотря на обращение самого Ez в бесконечность. Поэтому из
--> ЧИТАТЬ ПОЛНОСТЬЮ <--