Курсовая работа: Электростатика проводников
следует, что конечно. Это значит, что Ey непрерывно на поверхности. То же самое относится и к Ex , а поскольку внутри проводника вообще Е = 0, то мы приходим к выводу, что касательные компоненты внешнего поля на его поверхности должны обращаться в нуль:
Et = 0.
Таким образом, электростатическое поле должно быть нормальным к поверхности проводника в каждой ее точке. Поскольку , то это значит, что потенциал поля должен быть постоянным вдоль всей поверхности проводника.
Нормальная к поверхности компонента поля просто связана с плотностью распределенного по поверхности заряда. Эта связь получается из общего электродинамического уравнения , которое после усреднения принимает вид
,
где - средняя плотность заряда. В интегральном виде это уравнение означает, что поток электрического поля через замкнутую поверхность равен полному заряду, находящемуся в ограниченном этой поверхностью объеме. На внутренней площадке Е = 0, найдем, что , где - поверхностная плотность заряда, т. е. заряд на единице площади поверхности проводника. Таким образом, распределение зарядов по поверхности проводника дается формулой
.
Полный заряд проводника
,
где интеграл берется по всей его поверхности.
2. Энергия электростатического поля проводников
Вычислим полную энергию U электростатического поля заряженных проводников:
,
где интеграл берется по всему объему пространства вне проводников. Преобразуем этот интеграл и получим выражение:
,
аналогичное выражению для энергии системы точечных зарядов.
Заряды и потенциалы проводников не могут быть заданы одновременно произвольным образом; между ними существует определенная связь. Она должна быть линейной, т.е. выражаться соотношениями вида
,
где величины Caa , Cab имеют размерность длины и зависят от формы и взаимного расположения проводников. Величины Caa называют коэффициентами емкости, а величины Cab - коэффициентами электростатической индукции.
Обратные выражения для потенциалов через заряды:
,
где коэффициенты составляет матрицу, обратную матрице коэффициентов .
Вычислим изменение энергии системы проводников при бесконечно малом изменении их зарядов или потенциалов:
.
Это выражение можно преобразовать далее двумя эквивалентными способами. Окончательно имеем:
,
т.е. получаем изменение энергии, выраженное через изменение зарядов.
С другой стороны:
,