Курсовая работа: Элементы теории множеств

Если A является подмножеством B, то B называется надмножеством A.

Если среди данных множеств одно из них является подмножеством другого, это обозначает, что они связаны отношением включения.

Отношение нестрогого включения обозначается “”.

Отношение строгого включения обозначается “”.

AB обозначает, что множество A содержится в B, при чем А может быть равным множеству B. Строгое включение исключает такое равенство.

Если AB, A , то A – собственное подмножество множества В.

Свойства отношения включения.

A выполняется AA (рефлексивность).

A, B выполняется AB  BA Þ A=B (антисимметричность).

A, B, C выполняется AB  BC Þ AC (транзитивность).

Пример.

Пустое множество является подмножеством любого множества.

Множество {2, 4, 6, ... , 2n, ...} является собственным подмножеством множества натуральных чисел {1, 2, 3, 4…}.

2.2. Операции над множествами и их свойства

Основными операциями над множествами являются объединение, пересечение и разность.

Определение объединения множеств. Суммой, или объединением произвольного конечного или бесконечного множества множеств называется множество, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из множеств А, В. AB={x | xA V xB}.

Пример.

A={1, 3, 5}, B={2, 4, 6}. AB={1, 2, 3, 4, 5, 6}.

Определение пересечения множеств. Произведением, или пересечением любого конечного или бесконечного множества множеств называется множество, состоящее из тех и только тех элементов, которые принадлежат множествам А и В одновременно. AB = {x | xA  xB}.

Если множества заданы характеристическими свойствами своих элементов, то из определения пересечения следует, что характеристическое свойство множества АВ составляется из характеристических свойств пересекаемых множеств с помощью союза “и”.

Пример.

A={1, 3, 5}, B={1, 3, 7, 9}. AB={1, 3}.

Определение разности множеств. Разностью между множеством A и множеством B называется множество всех элементов из A, не являющихся элементами множества B. A\B = {x | xA  xB}.

Если множества А и В заданы характеристическими свойствами их элементов, то из определения объединения следует, что характеристическое свойство элементов множества А U В составляется из характеристических свойств элементов множеств А и В с помощью союза “или”.

Пример.

A={1, 3, 5, 18}, B={1, 3, 7, 9}. A\B={5, 18}.

Определение симметрической разности множеств. Симметрической разностью множеств A и B называется множество всех элементов из A, не являющихся элементами множества B в объединении с множеством всех элементов из B, не являющихся элементами множества A. A∆B=(A\B)(B\A).

Пример.

A={1, 3, 5, 18}, B={1, 3, 7, 12}. A∆B={5, 7, 12, 18}.

К-во Просмотров: 751
Бесплатно скачать Курсовая работа: Элементы теории множеств