Курсовая работа: Элементы теории множеств

A=A;

AU=A;

A=;

;

;

A\=A;

8. Свойства абсолютного дополнения: A справедливо

A=U;

;

A=.

9. Частные свойства разности множеств:

Если AB=, то А\В=А;

Если AB, то А\В=;

А\В = А\(АВ);

A\A =;

A\ =A.

2.3. Диаграммы Эйлера-Венна

Операции множеств и связанные с ними соотношения представляются наглядно с помощью диаграмм Эйлера-Венна (названных по имени русского математика Леонарда Эйлера (1707-1783гг.) и английского логика Джона Венна (1834-1923гг.). На этих диаграммах любые множества изображаются кругами, пересекающими друг друга, исходя из того, что внутренними точками круга изображаются элементы множества. Общей частью двух кругов, пересекающих друг друга, представляются возможные общие элементы двух множеств. Универсальное множество изображается в виде прямоугольника. Единичный элемент множества – точкой в круге.

Объединение множеств C=АВ (зеленое выделение):

Рис. 1

Пересечение множеств C=АВ (черное выделение):

Рис. 2

Множество В является подмножеством множества А:

Рис. 3

Разность A\B (зеленое выделение):

К-во Просмотров: 753
Бесплатно скачать Курсовая работа: Элементы теории множеств