Курсовая работа: Элементы теории множеств
В математике большую роль играют бинарные отношения, т.е. отношения, заданные на декартовом произведении двух множеств A1A2.
Определение отношения эквивалентности. Отношение R на множестве A2 называется отношением эквивалентности, если оно обладает следующими свойствами:
(x, x)R для всех xA (рефлексивность).
Если (x, y)R, то (y, x)R (симметричность).
Если (x, y)R и (y, z)R, то (x, z)R (транзитивность).
Обычно отношение эквивалентности обозначают знаком “=” или “”. Говорят, что это отношение задано на множестве А (но не на А2). Условия 1-3 в таких обозначениях выглядят более естественно:
x=x для всех xA (рефлексивность).
Если x=y, то y=x (симметричность).
Если x=y и y=z, то x=z (транзитивность).
Определение отношения порядка. Отношение R на множестве A2 называется отношением порядка, если оно обладает следующими свойствами:
Если (x, y)R и (y, x)R, то x=y (антисимметричность).
Если (x, y)R и (y, z)R, то (x, z)R (транзитивность).
Обычно отношение порядка обозначают знаком . Если для двух элементов x и y выполняется xy , то говорят, что x “предшествует” y. Как и для отношения эквивалентности, условия 1-3 в таких обозначениях выглядят более естественно:
xx для всех xA (рефлексивность).
Если x y и y x, то x = y (антисимметричность).
Если x y и y z, то x z(транзитивность).
Определение функционального отношения. Отношение R на декартовом произведении двух множеств A1A2 называется функциональным отношением, если оно обладает следующим свойством:
Если (x, y)R и (x, z)R, то y=z (однозначность функции).
Обычно, функциональное отношение обозначают в виде функциональной зависимости - (x, y)R тогда и только тогда, когда y=f(x). Функциональные отношения (подмножества декартового произведения) называют иначе графиком функциональной зависимости.
N-арные отношения (отношения степени n).
В математике n-арные отношения рассматриваются относительно редко, в отличие от баз данных, где наиболее важными являются именно отношения, заданные на декартовом произведении более чем двух множеств.
Глава 3. Теория бесконечных множеств
3.1. Мощность множества
Понятие “мощность множества” введено основателем теории множеств Г. Кантором (1878), который установил, что мощность множества действительных чисел больше , и тем самым показал, что бесконечные множества могут быть расклассифицированы по их мощности.
Мощность множества в математике есть обобщение на произвольные множества понятия «число элементов». Мощность множества определяется методом абстракции как то общее, что есть у всех множеств, эквивалентных (количественно) данному; при этом два множества называемых эквивалентными, если между ними можно установить взаимно однозначное соответствие. Мощности называются часто кардинальными (т. е. количественными) числами.
3.2. Множество натуральных чисел
Определение натурального множества. Всякое множество, удовлетворяющее свойствам
1N
n, nN Þ n + 1N
n, nN, n1 Þ$ yN, n = y +1