Курсовая работа: Генерация матриц
Курсовая работа
"Генерация матриц"
Введение
В настоящее время матричное исчисление широко применяется в различных областях математики, механики, теоретической физики, теоретической электротехники и т.д.
Целью курсовой работы является разработка алгоритма и написание на его основе программы, которая генерирует квадратную матрицу по ее введенному определителю, размерности и диапазона элементов матрицы.
Данная курсовая работа состоит двух глав, включающих в себя каждая несколько параграфов и подпунктов.
В первой главе приведена теоретическая часть по генерации матриц, включающая основные понятия и определения теории матриц, основные теоремы теории матриц, дающие научную основу для разработки алгоритма генерации матриц и написании на его основе программы. Здесь вводятся основные операции над матрицами и детально изучаются свойства определителей, являющихся основой числовой характеристикой квадратных матриц.
Во второй главе рассказывается об основных проблемах, с которыми столкнулся при составлении алгоритма и написании программы, приводится алгоритм генерации матриц, описываются некоторые важные части программы, основывающейся на алгоритме, и приводится листинг программного продукта.
В заключении говорится о проблемах, с которыми столкнулся при составлении алгоритма и написании на его основе программы, и о путях усовершенствования предложенного алгоритма и программы.
1. Матрицы и определители
1.1 Матрицы. Действия с матрицами
Все определения, теоремы, свойства, следствия и их доказательства, используемые в курсовой работе, взяты из книги В.А. Ильина, Э.Г. Позняка «Линейная алгебра».
Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество n столбцов (размера ).
Числа m и n называются порядками матрицы. Если m=n, матрица называется квадратной , а число m=n – её порядком .
Для записи матрицы применяются либо сдвоенные черточки, либо круглые или квадратные скобки:
Для краткого обозначения матрицы часто используется либо одна большая латинская буква (например, A), либо символ , либо .
Числа , входящие в состав данной матрицы, называются её элементами .В записи первый индекс означает номер строки, а второй индекс – номер столбца.
В случае квадратной матрицы
(1.1)
вводится понятия главной и побочной диагоналей. Главной диагональю матрицы называется диагональ a 11 a 22 … an n , идущая из левого верхнего угла этой матрицы в правый нижний её угол. Побочной диагональю матрицы называется диагональ an 1 a ( n - 1)2 … a 1 n , идущая из левого нижнего угла в правый верхний угол.
Прежде всего, будем считать две матрицы равными , если эти матрицы имеют одинаковые порядки и все их соответствующие элементы совпадают.
Перейдём к определению основных операций над матрицами.
Сложение матриц .Суммой двух матриц и одних и тех же порядков m и n называется матрица тех же порядков m и n , элементы ci j которой равны
(1.2)
Для обозначения суммы двух матриц используется запись C=A+B. Операция составления суммы матриц называется их сложением .
Итак, по определению
=
=
Из определения суммы матриц, а точнее из формулы (1.2) непосредственно вытекает, что и операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно:
1) переместительным свойством: A+B=B+A,
2) сочетательным свойством: (A+B)+C=A+(B+C).
Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--