Курсовая работа: Генерация матриц
Для этого в правой части (1.13) разложим каждый минор (n ‑1) – го порядка по первой строке. В результате вся правая часть (1.13) представится в виде линейной комбинации с некоторыми коэффициентами тех же самых миноров
(1.18)
и остается вычислить множители и убедиться в справедливости для них формулы (1.17).
Для этого заметно, что минор получается в результате разложения по первой строке только следующих двух миноров (n – 1) – го порядка, отвечающих элементам i ‑й строки матрицы (1.8): минора и минора (ибо только эти два минора элементов i‑й строки содержат все столбцы минора ).
В разложениях миноров и по первой строке выписывается только слагаемые, содержащие минор (остальные слагаемые обозначаются многоточием). Учитывая при этом, что элемент aik минора стоит на пересечении первой строки и (k ‑1) – го столбца этого минора, а элемент aij минора стоит на пересечении первой строки и j ‑ го столбца этого минора, получается
(1.19)
(1.20)
Вставляя (1.19) и (1.20) в правую часть (1.13) и собирая коэффициент при , получается, что в сумме (1.18) определяется той же самой формулой (1.17), что и в равенстве (1.14).
Теорема 1.1 доказана.
Теорема 1.1 установила возможность разложения определителя n‑го порядка по любой его строке. Естественно возникает вопрос о возможности разложения определителя n – го порядка по любому его столбцу. Положительный ответ на этот вопрос дает следующая основная теорема.
Теорема 1.2. Каков бы ни был номер столбца j (j = 1,2,…,n ), для определителя n ‑го порядка ( 1.11) справедлива формула
(1.21)
называемая разложением этого определителя по j ‑му столбцу.
Доказательство. Достаточно доказать теорему для j = 1, т.е. установить формулу разложения по первому столбцу
,(1.22)
иначе если формула (1.22) будет установлена, то для доказательства формулы (1.21) для любого j = 2,3,…,n достаточно, поменяв ролями строки и столбцы, дословно повторить схему рассуждений теоремы 1.1.
Формула (1.22) устанавливается по индукции.
При n = 2 эта формула проверяется элементарно (так как при n = 2 миноры элементов первого столбца имеют вид то при n = 2 правая часть (1.22) совпадает с правой частью (1.10)).
Предположим, что формула разложения по первому столбцу (1.22) верна для определителя порядка n – 1 и, опираясь на это, можно убедиться в справедливости этой формулы для определителя порядка n .
С этой целью выделим в правой части формулы (1.12) для определителя n – го порядка ∆первое слагаемое ,а в каждом из остальных слагаемых разложим минор (n ‑1) – го порядка по первому столбцу.
В результате формула (1.12) будет иметь вид
, (1.23)
где – некоторые подлежащие определению коэффициенты. Для вычисления минор получается при разложении по первому столбцу только одного из миноров (n ‑1) – го порядка, отвечающих первой строке, – минора . В разложении минора (при ) по первому столбцу записывается только то слагаемое, которое содержит минор (остальные слагаемые обозначаются многоточием). Учитывая, что элемент ai 1 минора (при ) стоит на пересечении (i ‑1) – й строки и первого столбца этого минора, получается, что при
(1.24)
Вставляя (1.24) в правую часть (1.12) (из которой исключено первое слагаемое) и собирая коэффициент при , видно,
что коэффициент в формуле (1.23) имеет вид
(1.25)
Остается доказать, что и правая часть (1.22) равна сумме, стоящей в правой части (1.23) с теми же самыми значениями (1.25) для .
Для этого в правой части (1.22) выделяется первое слагаемое , а в каждом из остальных слагаемых раскладывается минор (n ‑1) – го порядка по первой строке.