Курсовая работа: Измеримые функции

2) Измеримость суммы f(х) + g(х) следует из того, что

f(х) + g(х) = f(х) – [ - g (х)].

3) Измеримость произведения f(x) . g(x) вытекает из тождества

f(x) . g(x)={[f(x)+g(x)]-[f(x)-g(x)]}

и теоремы 7

4) Наконец, измеримость частного есть следствие тождества

=f(x) ·.

Эта теорема показывает, что действия арифметики, будучи применены к измеримым функциям, не выводят нас за пределы этого класса функций. Следующая теорема устанавливает сходный результат относительно уже не арифметической операции – предельного перехода.

Теорема 2. Пусть на множестве Е задана последовательность измеримых функций f 1 ( x ), f 2 ( x ), … Если в каждой точке хЕ существует (конечный или бесконечный) предел

F(x)=fn (x),

то функция F (х) измерима.

Д о к а з а т е л ь с т в о. Фиксируем произвольные а и введем в рассмотрение множества

А=Е(f> a + ), В=.

Эти множества, очевидно, измеримы, и для доказательства теоремы достаточно проверить, что

E(F>a) = .

Займемся же проверкой этого тождества.

Пусть хЕ (F>a), тогда F (x0 ) > a, и найдется такое натуральное m, что F(x0 ) > a + 1/m. Поскольку же fk (x) F (x0 ), то найдется такое n, что при knбудет

fk (x0 ) > a + .

Иначе говоря, х0 А при всех kn, а тогда х0 В и тем более х0 . Отсюда следует, что Е (F > a) .

Теперь остается установить обратное включение

E (F > a),

и теорема будет доказана.

Пусть х0 . Тогда х0 Впри некоторых фиксированных n и m. Это значит, что х0 А для kn. Иначе говоря для kn будет fk (x0 ) > a+1/m.

Устремляя k к бесконечности и переходя в последнем неравенстве к пределу, получим, что F(x0 )>a, т.е. x0 ÎE (F>a). Этим и доказано включение (*). Доказанная теорема допускает следующее обобщение.

Теорема 3. Пусть на множестве E заданы измеримые функции f 1 ( x ), f 2 ( x ), … и некоторая функция F ( x ). Если соотношение

( a)

выполняется почти везде на Е, то F ( x ) измерима.

Д о к а з а т е л ь с т в о. Обозначим через А множество всех точек X Î Е, в которых соотношение (a) не имеет места (в этих точках предела может вовсе не существовать). По условию, mA=0 и F(x) измерима на множестве А. По теореме 2 она измерима и на множестве Е – А, а тогда она измерима и на всем множестве Е.

Последовательности измеримых функций. Сходимость по мере.

В этом месте нам придется рассматривать множества вида Е (|f – g| ³s), Е (|f – g| <s), где f(x) и g(x) суть функции заданные не множестве Е, а s некоторое положительное число. При этом точки, в которых обе функции f(x) и g(x) принимают бесконечные значения одного знака, строго говоря, не входят ни в одно из этих множеств, поскольку в этих точках разность f(x) – g(x) лишена смысла. Так как указанное обстоятельство представляет известные неудобства, то мы раз и навсегда условимся эти точки относить к множеству Е (|f – g| ³s). При таком соглашении очевидно

Е = Е (|f – g| ³s) + Е (|f – g| <s)

и слагаемые правой части не пересекаются.

Теорема 1 (А. Лебег). Пусть на измеримом множестве Е задана последовательность измеримых и почти везде конечных функций f 1 ( x ), f 2 ( x ), f 3 ( x ), …, которая почти во всех точках Е сходится к почти везде конечной функции f ( x ). Тогда, каково бы ни было s>0, будет

Д о к а з а т е л ь с т в о. Отметим прежде всего, что в силу теоремы 3, предельная функция f(x) также измерима и, стало быть, измеримы те множества, о которых идет речь.

Положим

А = Е(|f| = + ¥), An = E(|fn | = + ¥), B = E (fn не ®f)

.

Очевидно,

MQ = 0 (1)

Пусть, далее,

, , .

Все эти множества измеримы.

Так как R1 (s)ÉR2 (s)ÉR3 (s)É…, то, в силу теоремы 12, при n®¥ будет

mRn (s)®mM. (2)

К-во Просмотров: 424
Бесплатно скачать Курсовая работа: Измеримые функции