Курсовая работа: Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп

Исполнитель:

Студентка группы М-53 МОКЕЕВА О. А.

Научный руководитель:

доктор ф-м наук, профессор Семенчук В.Н.

Гомель 2009


Оглавление

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ

Введение

1 Некоторые базисные леммы

2 Критерий принадлежности групп, факторизуемых обобщенно субнормальными -подгруппами, индексы которых взаимно просты, наследственно насыщенным формациям

Заключение

Список использованных источников


П еречень условных обозначений

Рассматриваются только конечные группы. Вся терминология заимствована из [44, 47].

--- множество всех натуральных чисел;

--- множество всех простых чисел;

--- некоторое множество простых чисел, т. е. ;

--- дополнение к во множестве всех простых чисел; в частности, ;

примарное число --- любое число вида .

Буквами обозначаются простые числа.

Пусть --- группа. Тогда:

--- порядок группы ;

--- множество всех простых делителей порядка группы ;

-группа --- группа , для которой ;

-группа --- группа , для которой ;

--- коммутант группы , т. е. подгруппа, порожденная коммутаторами всех элементов группы ;

--- подгруппа Фиттинга группы , т. е. произведение всех нормальных нильпотентных подгрупп группы ;

--- наибольшая нормальная -нильпотентная подгруппа группы ;

--- подгруппа Фраттини группы , т. е. пересечение всех максимальных подгрупп группы ;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 233
Бесплатно скачать Курсовая работа: Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп