Курсовая работа: Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп

--- -холлова подгруппа группы ;

--- силовская -подгруппа группы ;

--- дополнение к силовской -подгруппе в группе , т. е. -холлова подгруппа группы ;

--- нильпотентная длина группы ;

--- -длина группы ;

--- минимальное число порождающих элементов группы ;

--- цоколь группы , т. е. подгруппа, порожденная всеми минимальными нормальными подгруппами группы ;

--- циклическая группа порядка .

Если и --- подгруппы группы , то :

--- является подгруппой группы ;

--- является собственной подгруппой группы ;

--- является нормальной подгруппой группы ;

--- ядро подгруппы в группе , т. е. пересечение всех подгрупп, сопряженных с в ;

--- нормальное замыкание подгруппы в группе , т. е. подгруппа, порожденная всеми сопряженными с подгруппами группы ;

--- индекс подгруппы в группе ;

;


--- нормализатор подгруппы в группе ;

--- централизатор подгруппы в группе ;

--- взаимный коммутант подгрупп и ;

--- подгруппа, порожденная подгруппами и .

Минимальная нормальная подгруппа группы --- неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы ;

--- является максимальной подгруппой группы .

Если и --- подгруппы группы , то:

--- прямое произведение подгрупп и ;

--- полупрямое произведение нормальной подгруппы и подгруппы ;

--- и изоморфны;

--- регулярное сплетение подгрупп и .

Подгруппы и группы называются перестановочными, если .

К-во Просмотров: 238
Бесплатно скачать Курсовая работа: Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп