Курсовая работа: Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп
Именно изучению таких формаций посвящена данная работа. В частности, в классе конечных разрешимых групп получено полное решение данной проблемы.
1 Некоторые базисные леммы
В данном разделе доказаны леммы, которые существенным образом используются при доказательстве основного раздела данной главы.
1.1 Лемма [18-A]. Пусть --- насыщенная формация, принадлежит и имеет нормальную силовскую -подгруппу для некоторого простого числа . Тогда справедливы следующие утверждения:
1) ;
2) , где --- любое дополнение к в .
Доказательство. Так как , то , а значит, . Так как и формация насыщенная, то не содержится в . Так как --- элементарная группа, то по теореме 2.2.16, обладает -допустимым дополнением в . Тогда , . Если , то отлична от и, значит, принадлежит . Но тогда, ввиду равенства , имеем
отсюда следует и . Тем самым доказано, что .
Докажем утверждение 2). Очевидно, что является -корадикалом и единственной минимальной нормальной подгруппой группы , причем . Поэтому, ввиду теоремы 2.2.17,
Очевидно,
. Если , то
отсюда . Значит, . Лемма доказана.
Пусть и --- произвольные классы групп. Следуя [55], обозначим через --- множество всех групп, у которых все -подгруппы принадлежат .
Если --- локальный экран, то через обозначим локальную функцию, обладающую равенством для любого простого числа .
1.2 Лемма [18-A]. Пусть и --- некоторые классы групп. Тогда справедливы следующие утверждения:
1) --- наследственный класс;
2) ;
3) если , то ;
4) если , то --- класс всех групп;
5) если --- формация, а --- насыщенный гомоморф, то --- формация;
6) если , , --- некоторые классы групп и --- наследственный класс, то в том и только в том случае, когда ;
7) если и --- гомоморфы и , то .
Доказательство. Доказательство утверждений 1), 2), 3) и 4) следует непосредственно из определения класса групп .
Пусть , --- нормальная подгруппа группы и --- -подгруппа из . Пусть --- добавление к в . Покажем, что . Предположим противное. Пусть не входит в . Тогда обладает максимальной подгруппой , не содержащей . Поэтому , а значит, , что противоречит определению добавления.
Так как --- насыщенный гомоморф, то . Но тогда и . Значит, класс замкнут относительно гомоморфных образов.
Пусть . Пусть --- -подгруппа из . Тогда , а значит ввиду определения класса , имеем