Курсовая работа: Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп
;
--- класс всех минимальных не -групп, т. е. групп не принадлежащих , но все собственные подгруппы которых принадлежат ;
--- класс всех -групп из ;
--- класс всех конечных групп;
--- класс всех разрешимых конечных групп;
--- класс всех -групп;
--- класс всех разрешимых -групп;
--- класс всех разрешимых -групп;
--- класс всех нильпотентных групп;
--- класс всех разрешимых групп с нильпотентной длиной .
Если и --- классы групп, то:
.
Если --- класс групп и --- группа, то:
--- пересечение всех нормальных подгрупп из таких, что ;
--- произведение всех нормальных -подгрупп группы .
Если и --- формации, то:
--- произведение формаций;
--- пересечение всех -абнормальных максимальных подгрупп группы .
Если --- насыщенная формация, то:
--- существенная характеристика формации .
-абнормальной называется максимальная подгруппа группы , если
, где
--- некоторая непустая формация.
-гиперцентральной подгруппой в называется разрешимая нормальная подгруппа группы , если обладает субнормальным рядом таким, что
(1) каждый фактор является главным фактором группы ;
(2) если порядок фактора есть степень простого числа , то .
--- -гиперцентр группы , т. е. произведение всех -гиперцентральных подгрупп группы .
Введение
Известно, что формация всех сверхразрешимых групп не замкнута относительно произведения нормальных сверхразрешимых подгрупп, но замкнута относительно произведения нормальных сверхразрешимых подгрупп взаимно простых индексов. В связи с этим можно сформулировать следующую проблему.