Курсовая работа: Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп
-замкнутой, если силовская
-подгруппа группы
нормальна в
;
-нильпотентной, если
-холлова подгруппа группы
нормальна в
;
-разрешимой, если существует нормальный ряд, факторы которого либо
-группы, либо
-группы;
-сверхразрешимой, если каждый ее главный фактор является либо
-группой, либо циклической группой;
нильпотентной, если все ее силовские подгруппы нормальны;
разрешимой, если существует номер такой, что
;
сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.
Монолитическая группа --- неединичная группа, имеющая единственную минимальную нормальную подгруппу.
-замкнутая группа --- группа, обладающая нормальной холловской
-подгруппой.
-специальная группа --- группа, обладающая нильпотентной нормальной холловской
-подгруппой.
-разложимая группа --- группа, являющаяся одновременно
-специальной и
-замкнутой.
Группа Шмидта --- это конечная ненильпотентная группа, все собственные группы которой нильпотентны.
Добавлением к подгруппе группы
называется такая подгруппа
из
, что
.
Цепь --- это совокупность вложенных друг в друга подгрупп.
Ряд подгрупп --- это цепь, состоящая из конечного числа членов и проходящая через единицу.
Ряд подгрупп называется:
субнормальным, если для любого
;
нормальным, если для любого
;
главным, если является минимальной нормальной подгруппой в
для всех
.
Класс групп --- совокупность групп, содержащая с каждой своей группой и все ей изоморфные группы.
-группа --- группа, принадлежащая классу групп
.
Формация --- класс групп, замкнутый относительно факторгрупп и подпрямых произведений.
Если --- класс групп, то:
--- множество всех простых делителей порядков всех групп из
;
--- множество всех тех простых чисел
, для которых
;
--- формация, порожденная классом
;
--- насыщенная формация, порожденная классом
;
--- класс всех групп
, представимых в виде