Курсовая работа: Комплексные числа в планиметрии
A D A D
Рис. 1 Рис. 2
Решение. Требуется доказать:
Запишем левую часть равенства в комплексной форме: . Воспользовавшись (4a), находим комплексное равенство правой части и непосредственным подсчетом убеждаемся, что она равна левой.
B
P
C
M
N
A
Q D
Рис. 3
Задача 4. Доказать, что сумма квадратов медиан BM , AN , CP треугольника ABC равна суммы квадратов его сторон. (Рис.4 )
Решение. Требуется доказать: Запишем левую часть, воспользовавшись формулами (2) и (4а), и убедимся в том, что она равна правой.
Задача 5. Доказать, что расстояние от вершины С треугольника АВС до точки D, симметричной центру описанной окружности относительно прямой АВ, вычисляется по формуле |CD|2 =R2 +|AC|2 +|BC|2 -|AB|2 , где R - радиус описанной окружности. (Рис.5 )
Решение. Точка M является серединой АВ, так как центр описанной окружности лежит на пересечении серединных перпендикуляров.
Точка М - середина О D (по условию).
Тогда, . Воспользуемся этим равенством, формулами (2) и (4а) и убедимся в справедливости |CD|2 =R2 +|AC|2 +|BC|2 -|AB|2 .
|
N
P
A
C
A M C