Курсовая работа: Кооперативные игры
по коалиции {1, 2}, если x1 > y1 , x2 > y2 ;
по коалиции {1, 3}, если x1 > y1 , x3 > y3 ;
по коалиции {2, 3}, если x2 > y2 , x3 > y3 ,
т.е. если делёж y находится в одном из заштрихованных параллелограммов (за исключением трёх граничных прямых, проходящих через точку x) на рис. 3, то делёж x доминирует делёж y, а всякая точка находящаяся в не заштрихованных треугольниках, является предпочтительнее исхода x.
x3 = - 1 x2 = - 1
x = (x1 , x2 , x3 )
x3 = 1 - C3
x1 = 0
x1 = 1 - C1 x2 = 1 - C2
Рис.3 Рис. 4
Таким образом, если x и y - два исхода и ни один из них не предпочтительнее другого, то соответствующие точки лежат на прямой, параллельной одной из координатных осей.
Пример. Пусть имеется (0, 1)-редуцированная игра трёх игроков с ненулевой суммой.
Рассмотрим сначала условия доминирования дележа x = (x1 , x2 , x3 ) над дележём y = (y1 , y2 , y3 ) по коалиции {1, 2}. В этом случае имеем :
Поскольку может быть, что C3 < 1 , то первое из условий (7) нельзя отбросить, как это делает- ся в играх с постоянной суммой. Это значит что, x должна быть не ниже прямой
x1 + x2 = C3 .
Или, учитывая (6), последнее уравнение принимает вид
x3 = 1 + C3 .
Таким образом, если делёж x таков, что
x1 ³ 1 - C1 , x2 ³ 1 - C2 , x3 ³ 1 - C3 ,
то имеется три параллелограмма, заштрихованных на рис. 4, находясь в которых, точки x доминируют y.
Если в (8) одно из неравенств, например, третье не имеет места, то есть только 2 парал- лелограмма, заштрихованных на рис. 5, находясь в некоторых точках x доминирует y.
x1 = 1 - C1 x2 = 1 - C
2 x2 = 1 - C
2 x1 = 1 - C
1
x3 = 1 - C3
x
Рис. 5 Рис. 6
Из рассмотренного примера видно, что возможно много вариантов, которые возникают при изучении вопросов, связанных с доминированием дележей в кооперативных играх. С ростом числа игроков чрезвычайно быстро растёт количество таких вариантов. В связи с этим возникает необходимость выделения вполне устойчивых дележей, т.е. таких дележей, которые не доминируются никакими другими дележами. Множество вполне устойчивых дележей в кооперативной игре называется с-ядром этой игры.
Теорема. Для того чтобы делёж x принадлежал с-ядру кооперативной игры с характеристической функцией u, необходимо и достаточно, чтобы для любой коалиции K выполнялось неравенство