Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления
Ниже представлен график оптимального управления полученного с помощью скрипта Gramian_Uprav.m.:
Рис.21. График оптимального управления .
Графики фазовых координат аналогичны, как и в оптимальной L – проблеме моментов.
Сравним управление, полученное в начальной и конечной точках в пунктах 3 и 4 соответственно:
и
Выводы: Как видно, значения граничных управлений совпадают. А это значит, что задача перевода объекта из начального состояния в конечное решена с высокой степенью точности и с минимальной энергией.
Графическое сравнение оптимальных управлений из пунктов 3 и 4:
Рис.21. Сравнение графиков оптимального управления .
5. Аналитическое конструирование оптимальных регуляторов (АКОР)
5.1 Стабилизации объекта управления на полубесконечном интервале времени
Рассмотрим линейный объект управления, описываемый системой дифференциальных уравнений в нормальной форме
Необходимо получить закон управления
минимизирующий функционал вида
Начальные условия для заданной системы
Моменты времени фиксированы. Матрицы — симметричные неотрицательно определенные:
матрица — положительно определенная:
Матричное дифференциальное уравнение Риккати имеет вид:
Если линейная стационарная система является полностью управляемой и наблюдаемой , то решение уравнения Риккати при стремится к установившемуся решению не зависящему от и определяется следующим алгебраическим уравнением:
В рассматриваемом случае весовые матрицы и в функционале не зависят от времени.
Оптимальное значение функционала равно