Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления
.
3.2 Оптимальная L – проблема моментов в пространстве состояний
Система задана в виде:
Решение ДУ имеет вид:
, при имеем:
.
Составим моментные уравнения:
Подставляя необходимые данные в выше приведенные формулы, получим следующие моменты и моментные функции:
Числовое значение найденных моментов:
Моментные функции:
Заметим, что моменты и моментные функции совпадают с моментами и моментными функциями, найденными в пункте (а).
Из этого следует, что функционал, значения , управление и минимальная энергия будут иметь точно такие же числовые значения и аналитические выражения, как и в пункте (3.1).
Оптимальное управление имеет вид:
Проверим правильность полученного решения.
Эталонные значения координат в начальный и конечный момент времени:
,
,
Найденные значения координат в начальный и конечный момент времени:
,
,
Вычислим погрешность полученных результатов:
,