Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления
Формируем целевую функцию (по второму методу выбора начального допустимого базиса)
(14)
б) Решение задачи быстродействия
Предположим, что , где – оптимальное число шагов. Так как значение нам неизвестно (но известно точно), выбираем некоторое начальное и решаем задачу линейного программирования (12)-(14).
При этом
Общее число столбцов в симплекс-таблице:
Число базисных переменных:
Сформируем строку. Имеем
Выразим из уравнения (12) начальные базисные переменные
и подставим в целевую функцию. Получим – строку
(15)
Решаем задачу (12) – (14) симплекс-методом.
В случае,
если , – малое число
иначе
1) если увеличить и целое,рвернуться к первому шагу формирования задачи линейного программирования;
2) если (не все управления будут равны предельным, могут быть, в том числе нулевые)), , уменьшить , вернуться к первому шагу формирования задачи линейного программирования.
Решения данной задачи получено с помощью пакета Matlab 7.4 (скрипт SimplexMetod2.m):
Рис. 14 . График фазовой координаты .
Рис. 15 . График фазовой координаты .
Рис. 16 . График .
Рис. 17 . График оптимального управления .