Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления
и является квадратичной функцией от начальных значений отклонения вектора состояния.
Таким образом, получаем, что при оптимальное управление приобретает форму стационарной обратной связи по состоянию
где — решение алгебраического матричного уравнения Риккати.
5.1.1. Решение алгебраического уравнения Риккати методом диагонализации
Для решения данной задачи найдем весовые матрицы и
:
Выберем произвольно , тогда
Взяв значения из решения задачи L – проблемы моментов получим:
Матрицы системы имеют вид:
,
.
Введем расширенный вектор состояния .
Тогда матрица Z будет иметь следующий вид: ,
или в численном виде
.
Собственные значения матрицы :
.
Зная собственные значения и собственные вектора матрицы Z , построим матрицу
По определению все решения должны быть устойчивы при любых начальных условиях , т.е. при
. Чтобы не оперировать комплексными числами, осуществим следующий переход. Пусть:
Тогда матрица формируется следующим образом:
.
Можно показать, что матрицу можно получить из прямой матрицы собственных векторов:
,
.
Установившееся решение уравнения Риккати, полученное с помощью скрипта Solve_Riccati_Method_Diag.m. имеет вид: