Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления
Закон оптимального управления в данной задаче имеет вид
Матричное дифференциальное уравнение Риккати будет иметь следующий вид:
Если обозначить то можно записать
Уравнение замкнутой скорректированной системы примет вид
Матрицы заданы в пункте 5.1.1.
Весовые матрицы и имеют следующий вид:
, .
Используя скрипт AKOR_stabilizaciya_na_konech_interval.m получили следующие результаты:
Рис.26. Графики решения уравнения Риккати.
Рис.27. Графики коэффициентов регулятора обратной связи.
Рис.28. Графики фазовых координат.
Рис.29. График управления.
Сравним, как стабилизируется система управления с постоянными и переменными коэффициентами регулятора обратной связи на начальном этапе:
Рис.30. Графики фазовых координат.
Выводы: из графиков видно, что система, у которой коэффициенты регулятора меняются со временем, стабилизируется не хуже, чем, система, у которой коэффициенты регулятора не изменяются.
5.3 Задача АКОР – стабилизации для компенсации
известного возмущающего воздействия
Рассмотрим систему вида
,