Курсовая работа: Метод ортогонализации и метод сопряженных градиентов
Нетрудно проверить, что введенное таким способом скалярное произведение будет удовлетворять всем требованиям, которые к нему предъявляются.
При решении системы n уравнений по настоящей схеме требуется произвести
(28)
операций умножения и деления.
1.2 Метод ортогонализации в случае несимметрической матрицы
В случае несимметрической матрицы процесс ортогонализации проводится точно также. Пусть векторы уже построены. Тогда ищется в виде
(29)
Коэффициенты определяются из системы
(30)
Система в случае несимметрической матрицы будет треугольной.
Аналогично строится система «биортогональных» векторов, т.е. система 2n векторов, удовлетворяющих условию (12). При этом – n произвольных линейно независимых векторов, а векторы строятся последовательно в виде
(31)
Коэффициенты находятся из системы
(32)
Также поступаем, отыскивая коэффициенты и , при построении систем векторов (14) и (15), удовлетворяющих условиям (16).
При этом получим две системы:
(33)
из которых и определяем и .
Остановимся еще на одном методе ортогонализации. Будем рассматривать строки матрицы А как векторы:
(34)
Ортонормируем эту систему векторов. Первое уравнение системы делим на . При этом получим
(35)
где
(36)
Второе уравнение системы заменится на
(37)
где
(38)
Аналогично поступаем дальше. Уравнение с номером i примет вид