Курсовая работа: Метод ортогонализации и метод сопряженных градиентов
(15)
Вектор
(16)
будет иметь направление нормали к сечению поверхности гиперплоскостью (14) в точке . Из точки сместимся в направлении этого вектора так, чтобы функция достигла минимального значения. Это будет при
, (17)
(18)
примем за новое приближение к . Новый вектор невязок будет:
. (19)
Продолжая процесс, получим последовательности векторов , , , определяемые рекуррентными соотношениями:
(20)
Для этих векторов имеют место следующие соотношения:
(21)
(22)
В самом деле, в силу самого построения при i¹j
Далее, при i>j
Если i=j+1, то правая часть равна нулю, в силу определения , если же i>j+1, то , по доказанному, и
.
Продолжая понижение индекса у вектора , через несколько шагов придем к скалярному произведению (по определению ). Таким образом, соотношения (21) доказаны. Для доказательства (22), в силу равноправия индексов i и j, предположим, что i>j. Тогда
.
Так как в n-мерном векторном пространства не может быть более n взаимно ортогональных векторов, то на некотором шаге получим , т.е. будет решением системы (1).
На рис. 1 показана геометрическая картина нашего построения при n=3.
Рис. 1
2.2 Второй алгоритм метода
Приведем другой алгоритм метода. Будем обозначать последовательные приближения к решению через и введем обозначения:
. (23)
Первые два приближения и возьмем так, чтобы