Курсовая работа: Методология изучения темы Признаки равенства треугольников
I. Урок начинается с беседы учителя.
· Среди множества различных фигур на плоскости выделяется большое семейство многоугольников. Слово «многоугольник» указывает на то, что у всех фигур из этого семейства «много углов». Для определения многоугольника важно указать, что эта фигура ограничена замкнутой ломаной линией, звенья которой не пересекают друг друга.
· Какая из фигур, изображенных на рисунке 1, является многоугольником?
Рис. 1
- Чем отличаются многоугольники 2 и 3 на рисунке 1?
- Каким наименьшим числом можно заменить «много» в слове «многоугольник»? [Числом 3.]
Значит, самым простым многоугольником является треугольник. Знакомый всем нам с детства треугольник таит в себе немало интересного и загадочного.
II. На экране изображен треугольник ABC (рис. 2). (Вводятся названия основных его элементов и делается запись в тетрадях.)
D ABC: A, B, C – вершины;
AB, BC, CA – стороны;
ÐA, ÐB, ÐC – углы.
Рис. 2
Задание. Измерьте углы D ABC и вычислите их сумму. (Большинство учащихся получают результат, равный 180°.)
Вывод: сумма градусных мер углов треугольника равна 180°.
Задачи
1. В треугольнике один из углов равен 65°, а другой 80°. Чему равен третий угол этого треугольника?
2. В треугольнике ABC градусная мера угла B равна 40°, а градусная мера угла A в три раза больше. Найдите градусную меру угла C.
III. Физкультурная пауза
IV. Продолжим знакомство с треугольниками. (Учитель обращает внимание на модели треугольников, размещенные на магнитной доске.)
· Все большое семейство треугольников можно разделить на группы в зависимости от сторон и углов. (По ходу введения видов треугольников заполняется таблица (рис. 3) в тетради.)
Вид треугольника | Равнобедренный | Равносторонний | Разносторонний |
Прямоугольный |
|
| |
Тупоугольный |
|
| |
Остроугольный |
|
|
|
Рис. 3
- На карточках, имеющихся на каждом столе, изображены различные треугольники (рис. 4). Определите на глаз вид каждого треугольника.
Рис. 4
Задача. Из шести одинаковых палочек сложите четыре равных треугольника.
[Тетраэдр.]
Демонстрируются: каркасная модель тетраэдра, модели пирамид, октаэдра.
V. Задание на дом
1. Составьте рисунки из геометрических фигур (преимущественно из треугольников), узоры из треугольников.
УРОК 2
Тема урока: «Свойства равнобедренного и равностороннего треугольников»
Цели урока:
- развить представление о треугольниках;
- изучить терминологию, связанную с понятиями равнобедренного и равностороннего треугольников;
- открыть неизвестные ранее свойства равнобедренного и равностороннего треугольников;
- продолжить построение треугольников с заданными свойствами на нелинованной бумаге;
- учить детей анализу задач на построение.
Оборудование: схема-классификация треугольников; выставка рисунков учащихся (на предыдущем уроке было задано домашнее задание – выполнить рисунки с использованием изображения треугольника); слайды с изображениями треугольников.
Ход урока
I. Организационный момент
Проверка готовности к уроку (наличие чертежных инструментов, нелинованной бумаги).
II. Два ученика получают задания и выполняют их на доске.
1. Начертите прямоугольный треугольник так, чтобы стороны, образующие прямой угол, были равны 3 дм и 5 дм.
2. В треугольнике ABC градусная мера угла A равна 58°, а угла B равна 49°. Вычислите градусную меру угла C.
Четыре ученика получают карточки с заданием и выполняют работу на нелинованной бумаге.