Курсовая работа: Методология изучения темы Признаки равенства треугольников
2) Взяли проволоку длиной 17 см и из нее сделали треугольник, две стороны которого равны 5 см и 6 см. Каков вид этого треугольника?
С остальными учениками проводится фронтальный опрос.
1. Назовите треугольники, изображенные на доске (рис. 5).
2. Назовите вершины D MKN.
3. Назовите стороны D PST.
4. Назовите углы D ABC.
[Ð ABC, Ð BCA, Ð BAC.]
5. Может ли быть треугольник с двумя прямыми углами? С двумя тупыми углами? Ответ обоснуйте.
6. Существует ли треугольник, все углы которого больше 70°? Меньше 50°?
Рис. 5
7. По схеме (рис. 6) повторяются виды треугольников.
Вид треугольника | Равнобедренный | Равносторонний | Разносторонний |
Прямоугольный |
|
| |
Тупоугольный |
|
| |
Остроугольный |
|
|
|
Рис. 6
8. Определите «на глаз» вид каждого из треугольников, изображенных на слайдах (рис. 7).
Рис. 7
III. Ученики, работающие по карточкам, сдают выполненное задание. Те, кто работал у доски, рассказывают, как выполняли задание. Дополнительные вопросы им задают ученики.
IV. Итак, на предыдущем уроке мы познакомились с треугольником и изучили их виды.
· Как же построить равнобедренный треугольник с помощью циркуля и линейки?
· Ученики предлагают провести произвольный отрезок, затем из концов отрезка как из центров, не меняя раствора циркуля, провести дуги до пересечения. Точку пересечения соединить с концами отрезка.
· Почему вы уверены, что получился равнобедренный треугольник?
(Взяли раствор циркуля, не равный построенному отрезку и провели дуги равных окружностей. Точка их пересечения находится на равном расстоянии от концов отрезка.)
- Вводится название сторон: основание, боковые стороны (рис. 8).
D ABC: AB = BC, ÐA = ÐC.
Рис. 8
- Измерьте углы при вершинах A и C.
Большинство учеников получают равные градусные меры, и учитель сообщает, что именно таким образом в Древней Греции практическим путем установили, что «углы при основании» равны. И лишь много лет спустя это было доказано.
V. Физкультурная пауза
(Ученики повторяют за учителем все движения.)
VI. Продолжаем работу.
- Соедините вершину B с серединой противоположной стороны. Измерьте углы BMC и BMA. Что вы получили?
Ученики делают вывод: ÐBMC = ÐBMA = 90° и дополняют рисунок. Используя модель равнобедренного треугольника, учитель перегибает модель по отрезку BM. Ученики замечают, что треугольники ABM и BMC при наложении совпали, и делают вывод: D ABM = D BMC.
VII. Задание на дом
1. Постройте равнобедренный треугольник.
2. Измерьте все его углы. Сделайте вывод.
3. Проведите отрезки, соединяющие вершины с серединами противоположных сторон. Что вы заметили?
УРОК 3
Тема урока: «Построение треугольников. Равенство треугольников»
Цели урока:
- научить учеников строить треугольник, равный данному, используя циркуль и линейку;
- из опыта практической деятельности учащиеся должны понять, что треугольники равны по трем элементам; каждая сторона треугольника меньше суммы двух других.
Оборудование: у каждого ученика набор чертежных инструментов, цветная бумага, ножницы.
Ход урока