Курсовая работа: Методология изучения темы Признаки равенства треугольников

Задача 3. Внутри треугольника АВС проведена к стороне ВС прямая AD так, что угол CAD равен углу ACD. Периметры треугольников АВС и ABD равны 37 м и 24 м. Определить длину АС.

Задача 4. В равнобедренном треугольнике АВС проведена высота BD. Периметр треугольника АВС равен 50 м, а периметр треугольника ABD равен 40 м. Определить высоту BD.

УРОК 6

Обобщающий урок по теме «Признаки равенства треугольников»

Все учителя в начале изучения темы определяют для себя и для учащихся требования, предъявляемые к знаниям учащихся в конце ее изучения. В течение всего времени, отведенного на конкретную тему, работа учителя и учеников нацелена на достижение всеми учащимися обязательных результатов обучения. При этом используются различные виды уроков и различные формы работы. Результаты усвоения темы выявляет урок-зачет или контрольная работа. Накануне последнего урока по теме целесообразно проводить по ней обобщающие уроки. Удачно спланированный, детально продуманный, такой урок позволяет в полной мере раскрыться как учителю, так и ученикам. Эти уроки позволяют учителю за короткие промежутки времени (3–5 мин или 10–15 мин), меняя формы и приемы работы, проверить качество знаний учеников по конкретной теме, проверить умение применять эти знания в различных заданиях. Именно на уроках обобщения знаний наиболее ярко прослеживается структура познавательной деятельности учащихся. Она может быть охарактеризована следующим образом: учебно-практическое задание ® процесс выполнения задания ® обобщение результата в практической деятельности, абстрагирование ® формулировка математических понятий ® систематизация математических знаний ® интерпретация полученных знаний.

По дидактическим функциям занятия могут быть обучающими, познавательными, проверочными. На таких уроках продолжается процесс познания, хотя этот урок заключительный, т. е. урок- «итоговая черта», но познавательная деятельность здесь представляет собой самодвижение. В результате работы на уроке знания не поступают извне в виде информации, а являются внутренним продуктом практической деятельности самих учащихся.

Опыт показывает, что на таких уроках активность учащихся намного выше, чем на других уроках, а в результате и качество запоминания и воспроизведения изучаемого материала намного выше. Принцип состоит в том, что на таких уроках ученики не только воспринимают материал от учителя, но и сами активно участвуют в его создании и усвоении путем сочетания мыслительных операций с практическими действиями.

В это время у ребят развивается творческая самостоятельность, инициатива, лучше реализуется принцип связи теории и практики.

I. Организационный момент (2–3 мин.)

Завершается сообщением темы и цели урока (которые, в принципе, ученикам уже известны). Это делается еще и для того, чтобы перенастроить их мыслительную деятельность после предыдущего урока на настоящий урок.

II. Повторение признаков равенства треугольников (3–5 мин.)

Работают сразу 6 учеников (лучше слабых). Трое – на доске на чертеже «показывают признаки», а трое учеников их формулируют.

III. Тест на знание признаков равенства треугольников (8–10 мин.)

Каждый учащийся получает лист с изображением 10 пар треугольников, на которых отмечены соответственно равные элементы (приложение 1). Предлагается отыскать пары треугольников, о равенстве которых можно утверждать, опираясь на один из признаков.

На первый взгляд работа кажется простой, но это только в случае глубокого знания признаков. Свои результаты учащиеся вносят в лист фиксирования результатов (приложение 2). Такая форма работы должна быть уже опробована, чтобы время на организацию было минимально. В случае положительного ответа ученик вносит в 1-й столбец номер признака, по которому треугольники равны, в случае отрицательного ответа строку оставляют пустой. Во время работы над тестом ученики получают коды для проверки (приложение 3). После 5–6 мин работы – самопроверка. Для этого лист-код прикладывают ко второму столбцу. При этом совпадение ответов ученика и кода отмечается знаком «+» в третьем столбце. Подсчитывается количество заработанных баллов. Работа сразу же оценивается.

Критерии оценок:

10 баллов – оценка «5»,
9 баллов – «4»,
8 баллов – «3»,
меньше – «2».

Как правило, двоек на этом этапе обучения уже не бывает. Проверка и подведение итогов занимает 1–2 мин.

IV. Работа с опорной таблицей (5 мин.)

Смена письменной работы на устную не позволяет снизиться работоспособности. У каждого ученика в течение изучения всей темы имеется опорная таблица (приложение 4). Рассматриваем задачи 4, 7, 6. На любом этапе работы ученик может по сигналу учителя передать «эстафету» решения любому ученику по своему желанию. Этим достигается предельное внимание. Работа с таблицами полезна для развития геометрической наблюдательности и для выработки умения применять признаки равенства треугольников. Кроме того, учащиеся приучаются понимать рисунок.

V. Групповая работа (8–10 мин.)

Групповые занятия являются промежуточными между коллективным (фронтальным) и индивидуальным видами работы. Первоочередная цель групповой работы – эффективная помощь всем средним и слабоуспевающим учащимся. Работа идет в звеньях. Каждое звено состоит из четырех человек, в него входят как сильные, так и слабые учащиеся. Звенья рассаживаются так, чтобы одна пара учащихся сидела за другой. Во время работы «передняя пара» поворачивается к паре, сидящей сзади. На данном уроке ученикам каждого звена предлагается по одной задаче, участие в обсуждении и решении которой принимают все. Это обусловлено тем, что ученики заранее не знают, кто из них будет «отчитываться о проделанной работе». Это может быть представитель, «выдвинутый» учениками или назначенный учителем.

Группам предлагаются задачи, которые являются подготовительными к решению задачи следующего этапа; это «ступеньки к вершине». Здесь ярко прослеживается многоступенчатость в решении сложных задач, где каждая ступень – это задача, но более простая. Подготовительные задачи позволяют сформировать у учащихся опыт в решении задач и тем самым облегчить решение сложной задачи. На эту работу отводится 10–12 мин.

VI. Решение итоговой задачи (8–10 мин.)

Форма работы – фронтальная. Предлагается задача с готовым чертежом и записанными данными; ученики должны внимательно ее изучить. Цель считается достигнутой, если в этой задаче они увидят «свою» задачу, которую они решали в группе. Задача решается в несколько шагов со ссылкой на 3 ранее разобранные задачи, причем поэтапность в решении очень хорошо просматривается с помощью кодоскопных пленок наложением. Задача, ее решение и обсуждение занимают 7–10 мин.

VII. Математический диктант (3–4 мин.)

Эта форма работы позволяет за короткий промежуток времени (3–4 мин) проверить глубину знаний учащихся, выставить оценки, п

К-во Просмотров: 502
Бесплатно скачать Курсовая работа: Методология изучения темы Признаки равенства треугольников