Курсовая работа: Нестандартные методы решения уравнений и неравенств

Обозначив количество мужчин за х, количество женщин за у, мы придем к уравнению

Зх + 2y+ (100-х-y)= 100

Общего решения линейных диофантовых уравнений в те времена еще не знали и довольствовались лишь несколькими решениями, удовлетворяющими условию задачи. У самого Алькуина было приведено лишь одно решение этой задачи: мужчин, женщин и детей было 11, 15 и 74, а задача имеет 784 решения в натуральных числах.

Задачи, приводящие к линейным диофантовым уравнениям, имелись у Леонардо Пизанского (Фибоначчи) (1180 — 1240), в «Арифметике» Л. Ф. Магницкого.

Известное диофантово уравнение Пифагора (VI в. до н. э.) х2 + у2 = z2 решают в натуральных числах. Его решениями служат тройки чисел (х; у; z):

x = (m2 -n2 )l, y = 2mnl, z = (m2 + n2 )l,

где т, п, l - любые натуральные числа (т> п). Эти формулы помогают находить прямоугольные треугольники, длины сторон которых являются натуральными числами.

В 1630 г. французский математик Пьер Ферма (1601 — 1665) сформулировал гипотезу, которую называют великой (или большой) теоремой Ферма: «Уравнение хп + уп = zn для натурального п ≥ 3 не имеет решений в натуральных числах». Ферма не доказал свою теорему в общем случае, но известна его запись на полях «Арифметики» Диофанта: «...невозможно куб записать в виде суммы двух кубов, или четную степень в виде суммы таких же степеней, или вообще любое число, которое является степенью большей, чем вторая, нельзя записать в виде суммы двух таких же степеней. У меня есть поистине удивительное доказательство этого утверждения, но поля эти слишком узки, чтобы его уместить». Позднее в бумагах Ферма было найдено доказательство его теоремы для п= 4. С тех пор более 300 лет математики пытались доказать великую теорему Ферма. В 1770 г. Л.Эйлер доказал теорему Ферма для п = 3, в 1825 г. Адриен Лежандр (1752 1833) и Петер Дирихле (1805 — 1859) — для п = 5. Доказательство великой теоремы Ферма в общем случае не удавалось долгие годы. И только в 1995 г. Эндрю Вайлс доказал эту теорему.


2. РЕШЕНИЕ ЗАДАЧ С ИСПОЛЬЗОВАНИЕМ СВОЙСТВ ФУНКЦИИ

Не всякое уравнение f(x) = g(x) или неравенство в результате преобразований или с помощью удачной замены переменной может быть сведено к уравнению или неравенству того или иного стандартного вида, для которого существует определенный алгоритм решения. В таких случаях иногда оказывается полезным использовать некоторые свойства функций, такие как монотонность, периодичность, ограниченность, четность и др.

2.1 Использование монотонности функции

Функция f (x) называется возрастающей на промежутке D, если для любых чисел x1 и x2 из промежутка D таких, что x1 < x2 , выполняется неравенство f (x1 ) < f (x2 ).

Функция f (x) называется убывающей на промежутке D, если для любых чисел x1 и x2 из промежутка D таких, что x1 < x2 , выполняется неравенство f (x1 ) > f (x2 ).

На показанном на рисунке 1 графике

Рисунок 1

Функция y = f (x), , возрастает на каждом из промежутков [a; x1 ) и (x2 ; b] и убывает на промежутке (x1 ; x2 ). Обратите внимание, что функция возрастает на каждом из промежутков [a; x1 ) и (x2 ; b], но не на объединении промежутков

Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.

Заметим, что если f – монотонная функция на промежутке D (f (x)), то уравнение f (x) = const не может иметь более одного корня на этом промежутке.

Действительно, если x1 < x2 – корни этого уравнения на промежутке D (f(x)), то f (x1 ) = f (x2 ) = 0, что противоречит условию монотонности.

Перечислим свойства монотонных функций (предполагается, что все функции определены на некотором промежутке D).

· Сумма нескольких возрастающих функций является возрастающей функцией.

· Произведение неотрицательных возрастающих функций есть возрастающая функция.

· Если функция f возрастает, то функции cf (c > 0) и f + c также возрастают, а функция cf (c < 0) убывает. Здесь c – некоторая константа.

· Если функция f возрастает и сохраняет знак, то функция убывает.

· Если функция f возрастает и неотрицательна, то fn где nN, также возрастает.

· Если функция f возрастает и n – нечетное число, то f также возрастает.

· Композиция g (f (x)) возрастающих функций f и g также возрастает.

Аналогичные утверждения можно сформулировать и для убывающей функции.

К-во Просмотров: 735
Бесплатно скачать Курсовая работа: Нестандартные методы решения уравнений и неравенств