Курсовая работа: Нестандартные методы решения уравнений и неравенств
Не следует думать, что любая функция является либо четной, либо нечетной. Так, функция не является ни четной, ни нечетной, так как ее область определения несимметрична относительно начала координат. Область определения функции y = x3 + 1 охватывает всю числовую ось и поэтому симметрична относительно начала координат, однако f (–1) ≠ f (1). А это значит, что функция не является ни четной, ни нечетной, т. е. является функцией общего вида (ФОВ).
Если область определения функции симметрична относительно начала координат, то эту функцию можно представить в виде суммы четной и нечетной функций.
Таковой суммой является функция
Первое слагаемое является четной функцией, второе – нечетной.
Сравнительная иллюстрация функций разной четности изображена на рисунке 6
|
Рисунок 6 http://mathematics.ru/courses/function/design/images/buttonModel_h.gif
Исследование функций на четность облегчается следующими утверждениями.
· Сумма четных (нечетных) функций является четной (нечетной) функцией.
· Произведение двух четных или двух нечетных функций является четной функцией.
· Произведение четной и нечетной функции является нечетной функцией.
· Если функция f четна (нечетна), то и функция 1/f четна (нечетна).
Пример 2.4.1 Может ли при каком-нибудь значении а уравнение
2x8 – 3аx6 + 4x4 – аx2 = 5
иметь 5 корней?
Решение. Обозначим f(x) = 2х8 – 3ах6 + 4х4 – ах2 . f(x) – функция четная, поэтому, если x0 – корень данного уравнения, то -x0 – тоже. x = 0 не является корнем данного уравнения (0 ≠ 5). Следовательно, число корней у этого уравнения при любом действительном а четно, поэтому 5 корней оно иметь не может.
Ответ: не может.
2.5 Использование ОДЗ функции
Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция определена. Область определения иногда еще называют областью допустимых значений функции (ОДЗ). Для нахождения ОДЗ функции нужно проанализировать данное соответствие и установить встречающиеся запретные операции (деление на нуль, возведение в рациональную степень отрицательного числа, логарифмические операции над отрицательными числами и т. п.).
Иногда знание ОДЗ позволяет доказать, что уравнение (или неравенство) не имеет решений, а иногда позволяет найти решения уравнения (или неравенства) непосредственной подстановкой чисел из ОДЗ.
Пример 2.5.1 Решите уравнение
. (8)
Решение. ОДЗ этого уравнения состоит из всех х, одновременно удовлетворяющих условиям и , т. е. ОДЗ есть пустое множество. Этим решение уравнения и завершается, так как установлено, что ни одно число не может являться решением, т. е. что уравнение не имеет корней.
Ответ: Ø.
Пример 2.5.2 Решите уравнение
. (9)
Решение. ОДЗ этого уравнения состоит из всех x, одновременно удовлетворяющих условиям , , , т. е. ОДЗ есть . Подставляя эти значения х в уравнение (9), получаем, что его левая и правая части равны 0, а это означает, что все , являются его решениями.
Ответ:
Пример 2.5.3 Решите неравенство