Курсовая работа: Нестандартные методы решения уравнений и неравенств

Решение. ОДЗ неравенства (10) есть все х, удовлетворяющие условию . Ясно, что х = 1 не является решением неравенства (10). Для х из промежутка имеем , а . Следовательно, все х из промежутка являются решениями неравенства (10).

Ответ: .


Пример 2.5.4 [26] Решите неравенство

. (11)

Решение. ОДЗ неравенства (11) есть все х из промежутка . Разобьем это множество на два промежутка и .

Для х из промежутка имеем , . Следовательно, на этом промежутке, и поэтому неравенство (11) не имеет решений на этом промежутке.

Пусть х принадлежит промежутку , тогда и . Следовательно, для таких х, и, значит, на этом промежутке неравенство (11) также не имеет решений.

Итак, неравенство (11) решений не имеет.

Ответ: Ø.


3 НЕКОТОРЫЕ ИСКУССТВЕННЫЕ СПОСОБЫ РЕШЕНИЯ УРАВНЕНИЙ

Существуют и другие нестандартные методы решения уравнений и неравенств, помимо использования свойств функции. Данная глава посвящена дополнительным методам решения.

3.1 Умножение уравнения на функцию

Иногда решение алгебраического уравнения существенно облегчается, если умножить обе его части на некоторую функцию — многочлен от неизвестной. При этом надо помнить, что возможно появление лишних корней — корней многочлена, на который умножали уравнение. Поэтому надо либ

К-во Просмотров: 731
Бесплатно скачать Курсовая работа: Нестандартные методы решения уравнений и неравенств