Курсовая работа: Нестандартные методы решения уравнений и неравенств

· если , то x + T и x – T также принадлежат области определения D (f (x));

· для любого выполнено равенство


f (x + T) = f (x).

Поскольку то из приведенного определения следует, что

Если T – период функции f (x), то очевидно, что каждое число nT, где , n ≠ 0, также является периодом этой функции.

Наименьшим положительным периодом функции называется наименьшее из положительных чисел T, являющихся периодом данной функции.

График периодической функции

График периодической функции обычно строят на промежутке [x0 ; x0 + T), а затем повторяют на всю область определения.

Хорошим примером периодических функций могут служить тригонометрические функции y = sin x, y = cos x (период этих функций равен 2π), y = tg x (период равен π) и другие. Функция y = const также является периодической. Для нее периодом является любое число T ≠ 0.

В заключение отметим свойства периодических функций. [19]

· Если f (x) – периодическая функция с периодом T, то функция

g (x) = A · f (kx + b)

где k ≠ 0 также является периодической с периодом .

· Пусть функции f1 (x) и f2 (x) определены на всей числовой оси и являются периодическими с периодами T1 > 0 и T2 > 0. Тогда если то функция периодическая с периодом T, равным наименьшему общему кратному чисел T1 и T2.

Пример 2.4.1 Функция периодическая с периодом T = 5. Известно, что . Найдите

Решение. Преобразуем отдельно каждое слагаемое:

Тогда

Ответ: 2.

Пример 2.4.2 [24] Найдите период функции

Решение. Преобразуем данное выражение:

К-во Просмотров: 737
Бесплатно скачать Курсовая работа: Нестандартные методы решения уравнений и неравенств