Курсовая работа: Нестандартные методы решения уравнений и неравенств
Рисунок 3
Функция, ограниченная и сверху, и снизу, называется ограниченной на множестве D. Геометрически ограниченность функции f на множестве D означает, что график функции y = f (x), лежит в полосе c ≤ y ≤ C (рисунок 4).
Рисунок 4
Если функция не является ограниченной на множестве, то говорят, что она не ограничена.
Примером функции, ограниченной снизу на всей числовой оси, является функция y = x2 . Примером функции, ограниченной сверху на множестве (–∞; 0) является функция y = 1/x. Примером функции, ограниченной на всей числовой оси, является функция y = sin x.
Пример 2.2.1 Решите уравнение
sin(x3 + 2х2 + 1) = х2 + 2х + 2. (4)
Решение. Для любого действительного числа х имеем sin(x3 + 2х2 + 1) ≤ 1, х2 + 2х + 2 = (x + 1)2 +1 ≥ 1. Поскольку для любого значения х левая часть уравнения не превосходит единицы, а правая часть всегда не меньше единицы, то данное уравнение может иметь решение только при .
При , , т.е. при уравнение (4) так же корней не имеет .
Ответ: Ø.
Пример 2.2.2 Решите уравнение
. (5)
Решение. Очевидно, что х = 0, х = 1, х = -1 являются решениями данного уравнения. Для нахождения других решений в силу нечетности функции f(х) = = x3 - x - sinπx достаточно найти его решения в области х > 0, х ≠ 1, поскольку если x0 > 0 является его решением, то и (-x0 ) также является его решением.
Разобьем множество х > 0, х ≠ 1, на два промежутка: (0; 1) и (1; +∞)
Перепишем начальное уравнение в виде x3 - x = sinπx. На промежутке (0; 1) функция g(х) = x3 - x принимает только отрицательные значения, поскольку х3 < < х, а функция h(x) = sinπx только положительные. Следовательно, на этом промежутке уравнение не имеет решений.
Пусть х принадлежит промежутку (1; +∞). Для каждого из таких значений х функция g(х) = х3 - х принимает положительные значения, функция h(x) = sinπxпринимает значения разных знаков, причем на промежутке (1; 2] функция h(x) = sinπx неположительна. Следовательно, на промежутке (1; 2] уравнение решений не имеет.
Если же х > 2, то |sinπx| ≤ 1, x3 - x = x(x2 - 1) > 2∙3 = 6, а это означает, что и на промежутке (1; +∞) уравнение также не имеет решений.
Итак, x = 0, x = 1 и x = -1 и только они являются решениями исходного уравнения.
Ответ: {-1; 0; 1}.
Пример 2.2.3 Решите неравенство
. (6)
Решение. ОДЗ неравенства есть все действительные x, кроме x = -1. Разобьем ОДЗ неравенства на три множества: -∞ < x < -1, -1 < x ≤ 0, 0 < x < +∞ и рассмотрим неравенство на каждом из этих промежутков.
Пусть -∞ < x < -1. Для каждого из этих x имеем g(x) = < 0, а f(x) = 2x > 0. Следовательно, все эти x являются решениями неравенства.
Пусть -1 < x ≤ 0. Для каждого из этих x имеем g(x) = 1 - , а f(x) = 2x ≤ 1. Следовательно, ни одно из этих x не является решением данного неравенства.
Пусть 0 < x < +∞. Для каждого из этих x имеем g(x) = 1 - , a . Следовательно, все эти x являются решениями исходного неравенства.
Ответ: .
2.3 Использование периодичности функции