Курсовая работа: Нестандартные методы решения задач по математике
Решение. Поскольку не является корнем уравнения , то разделим обе его части на . Тогда
Если или , то левая часть уравнения будет больше , а правая его часть --- меньше . Следовательно, корни уравнения находятся на отрезке .
Пусть , где . Тогда уравнение принимает вид тригонометрического уравнения
Решением уравнения являются , где --- целое число. Однако , поэтому , и . Так как , то , и .
Ответ: , и .
Пример 9 Решить уравнение
Решение. Нетрудно видеть, что
Выполним замену , где . В таком случае левая часть уравнения принимает вид
а из уравнения следует тригонометрическое уравнение вида
Сделаем еще одну замену переменных, пусть , тогда и из получаем квадратное уравнение относительно переменной , т.е. , решением которого являются и . Так как и , то и . С учетом того, что , получаем систему тригонометрических уравнений
Из уравнений системы составим квадратное уравнение относительно вида и получаем и . Так как , то и
Ответ: , .
Пример 10 Решить систему уравнений
Решение. Поскольку и , то положим и , тогда и . Тогда и . В таком случае , и система уравнений принимает вид
Из первого уравнения системы получаем . Поскольку , то , Следовательно, получаем систему
Отсюда следует и . Так как и , то и .
Ответ: , .