Курсовая работа: Невласні подвійні інтеграли
Скажемо тепер декілька слів відносно випадку, коли функція f(x, y ) міняє знак; обмежимося для визначеності формулою (12). У граничному прямокутнику [а, b ; c , d ](при d>c )ми зберігаємо колишні припущення, але, разом із збіжністю повторного інтеграла від самої функції:
ми цього разу допустимо збіжність повторного інтеграла і від її абсолютної величини:
Тоді подібні ж повторні інтеграли існуватимуть і для функцій f + (x , y ) і f - (x , y ) . Застосовуючи до цих негативних функцій порізно доведену формулу (12) і віднімаючи результати, переконаємося в справедливості цієї формули і для даної функції f(x, y ).
2 Обчислення
Заміна змінних в невласних інтегралах.
Нехай в площинах ху і ξ𝜂 маємо, відповідно, обмежені області (D) і (∆), зв'язані формулами перетворення:
або зворотними їм:
з дотриманням всіх умов.
Нехай, далі, в області (D) задана функція неперервна усюди, за винятком граничного числа окремих точок або навіть кривих, де вона звертається в нескінченність.
Покажемо, що за цих умов рівність
має місце, якщо лише збігається один з цих інтегралів; збіжність іншого звідси вже випливатиме.
Дійсно, якщо особливі точки і особливі лінії першого інтеграла в області (D) виділити їх околами, то відповідними околами в області (∆) виділяться особливі точки і особливі лінії другого інтеграла. Нехай при цьому вийдуть область (D') на площині ху і область (∆') на площині ξ𝜂. Тоді
Передбачаючи неперервність відповідності між областями (D) і (∆) в обидві сторони , легко побачити, що при «стисканні» околів на площині ху до оточених ними точок або ліній такий же процес відбуватиметься і з околами на площині і навпаки. Звідси ясно, що, переходячи в попередньому співвідношенні до границі, із збіжності одного з інтегралів ми дійсно можемо говорити про збіжність іншого і в той же час про наявність рівності (15).
Можна було б допустити навіть, що в окремих точках області (∆) або уздовж окремих лежачих в ній ліній (не пересікають раніше розглянутих в цій області особливих ліній) звертається в нескінченність якобіан J(ξ,𝜂), а з ним і підінтегральна функція другого з інтегралів. Хоча відповідні точки і лінії на площині ху не є особливими для першого інтеграла, але їх виділення, по зауваженню, не створює скрути, так що при нових припущеннях висновок залишається в силі.
Відмітимо ще, що і в даному випадку часто доводиться стикатися з порушенням неперервності або взаємної однозначності відповідності в окремих точках або уздовж окремих ліній.
Нарешті, звернемося до випадку, коли хоч одна з областей (D), (∆)є необмеженою.
Якщо ці області тягнуться в нескінченність, причому точки їх, що знаходяться на кінцевій відстані, зв'язані відповідністю (14) або (14а), то, відокремивши (відповідними) кривими обмежені частини цих областей, (Dʹ) і (∆ʹ), ми при дотриманні вказаних вище умов матимемо рівність (16). Оскільки згадані криві, вочевидь, можуть віддалятися в нескінченність лише одночасно, то залишається лише перейти в (16) до межі, аби отримати (15), причому знову із збіжності одного з інтегралів випливає збіжність іншого.
Нехай тепер, скажімо, область (D) прямує в нескінченність, а область (∆) ні, і точки області (D) зв'язані відповідністю зі всіма точками області (∆), за винятком окремої точки (або кривої), яка, так би мовити, відповідає нескінченно видаленій частині контура області (D).
Відокремивши кривою обмежену частину області (D), ми відповідній кривій в області (∆) виділимо згадану точку (або криву) і тим отримаємо області (Dʹ) і (∆ʹ), до яких вже прикладені колишні міркування. Відмітимо, що заміна змінних разом з переходом до повторного інтегралу є вельми зручним засобом для встановлення існування невласних подвійних інтегралів.
3 Приклади
1) Встановити умови збіжності інтегралів (m>0);
Рішення. У полярних координатах ці інтеграли зведуться до наступних: