Курсовая работа: Определитель произведения прямоугольных матриц. Теорема Коши-Бине

(в сумме только те слагаемые ненулевые, где )

Тогда подстановка имеет вид: , где . К подстановке поставим в соответствие т.е

, такое соответствие называется взаимооднозначным отображением множества подстановок на множество подстановок , . Очевидно, что и имеют одинаковые инверсии, значит имеют одинаковую четность и знаки

Лемма 2

Если равны нулю все элементы какой-либо строки (столбца) матрицы за исключением быть может одного элемента, то определитель матрицы равен произведению этого элемента на его алгебраическое дополнение

Доказательство:

Пусть все элементы -строки матрицы за исключением элемента , перестановкой строк и столбцов переместили элемент в правый нижний угол , значит строк и -столбцов. Знак будет меняться раз, после этого получиться матрица у которой все элементы последней строки кроме может быть равны нулю. По Лемме 1 , т к

Теорема Лагранжа

равна сумме произведений элементов какого-либо столбца (строки) матрицы на их алгебраическое дополнение. Другими словами: разложение по -столбцу матрицы имеет вид: , а разложение по -строке матрицы :

Доказательство:

рассмотрим -столбец матрицы и запишем в виде: , по 6 свойству определителей:

, аналогично доказывается формула разложение по

К-во Просмотров: 432
Бесплатно скачать Курсовая работа: Определитель произведения прямоугольных матриц. Теорема Коши-Бине