Курсовая работа: Основи метрології та вимірювальної техніки
;
.
.
;
=;
Розрахунки реалізовані за допомогою математичного пакету MathCAD і наведені у додатку Б.
2.3 Розв’язок завдання 3
Найкращою оцінкою багатократних прямих рівно точних вимірювань, що дає змогу зменшити вплив випадкових складових похибки вимірювання кожного окремого спостереження, є середнє значення
.(2.9)
Незміщена оцінка дисперсії сукупності спостережених значень
(2.10)
Проаналізуємо чи немає серед спостережень грубих (аномальних) помилок. Сформуємо із спостережень варіаційний ряд (від найменшого значення до найбільшого):
16,62; 16,62; 16,63;16,66;16,68;16,69;16,72;16,73;16,73;16,77;16,79;16,79;
Перевіримо крайні члени ряду на аномальність. Знайдемо співвідношення
(2.11)
(2.12)
За табл.1 (додаток), що задає допустимі значення про нормованих відхилень від середнього і заданою довірчою ймовірністю, знайдемо , а саме: для , а отже, надійності , та n=12 маємо . Оскільки та менші від , то кратні значення (варіанти) варіаційного ряду не треба розглядати, як аномальні. Незміщена оцінка середньоквадратичного відхилення середнього значення
(2.13)
Оскільки кількість спостережень < 30, то при оцінюванні гарантійного (довірчого) інтервалу для похибки середнього доцільно скористатися не розподілом Гауса, а Стьюдента. За табл.. 2 (додаток), що задає допустимі значення гарантійного коефіцієнта для заданої гарантійної (довірчої) ймовірності, знайдемо відповідний коефіцієнт. А саме для n=12, =0,99, =3,055. Отже, результат вимірювання
(2.14)
2.4 Розв’язок завдання 4.
Похибку опосередкованого вимірювання шукаємо за похибками прямих вимірювань. Зокрема, відносна похибка , А абсолютна похибка непрямого вимірювання (див. задачу3)
(2.15)