Курсовая работа: Полунормальные подгруппы конечной группы
– группа имеет нильпотентный коммутант;
– подгруппы из перестановочны со всеми подгруппами из , а подгруппы из перестановочны со всеми подгруппами из . Подобная тематика разрабатывалась и в статье А.Ф. Васильева и Т.И. Васильевой.
В настоящей дипломной работе рассматриваются следующие вопросы: строение группы с максимальной полунормальной подгруппой и группы с полунормальной силовской подгруппой; признаки дисперсивности и сверхразрешимости факторизуемых групп с перестановочными циклическими подгруппами в факторах.
1. Силовские подгруппы конечных групп
По теореме Лагранжа порядок каждой группы делит порядок конечной группы. Обратное утверждение не всегда верно, т.е. если натуральное число делит порядок конечной группы , то в группе может и не быть подгруппы порядка .
Пример 1.1 Знакопеременная группа порядка 12 не содержит подгруппу порядка 6.
Допустим противное, пусть – подгруппа порядка 6 в группе . Тогда и . Группа содержит подгруппы
Если , то и , противоречие. Поэтому , а т. к. , то . Противоречие. Поэтому допущение не верно и группа не содержит подгруппу порядка 6.
Вполне естественно возниает вопрос: для каких делителей порядка конечной группы имеется подгруппа порядка .
Положительный ответ на этот вопросв случае, когда – степень простого числа, даёт теорема Силова. Для доказательства теоремы Силова потребуется следующая лемма.
Лемма 1.2 Если порядок конечной абелевой группы делится на простое число , то в группе существует элемент порядка .
Доказательство. Предположим противное, т.е. допустим, что существует абелева группа порядка , простое число делит , то в группе существует элемент порядка . Пусть .
Если делит для некоторого , то – элемент порядка , противоречие. Поэтому все элементы группы имеют порядки, не делящиеся на .
не делится на .
Так как группа абелева, то – подгруппа, и к произведению можно применить следующее
не делится на .
Затем обозначаем через и опять получаем, что не делится на . Через конечное число шагов приходим к выводу, что не делится на . Но
и , т.е. получаем, что не делит . Противоречие. Значит, допущение неверно и лемма спарведлива.
Пусть – простое число. - Группой называют конечную группу, порядок которой есть степень числа . Конечная группа называется примарной, если она является -группой для некоторого простого .
Теорема 1.3 . Пусть конечная группа имеет порядок , где – простое число и не делит . Тогда спарведливы следующие утверждения:
в группе существует подгруппа порядка для каждого ;
если – -подгруппа группы и – подгруппа порядка , то существует такой элемент , что ;
любые две подгруппы порядка сопряжены в группе ;
число подгрупп порядка в группе сравнимо с единицей по модулю и делит .
Доказательство. Доказательство проведём индукцией по . По индукции считаем, что для всех групп, порядок которых меньше порядка утверждение теоремы выполняется. Рассмотрим два случая.