Курсовая работа: Полунормальные подгруппы конечной группы
Так как – абелева группа, то к применима лемма 1.2. По этой лемме в есть элемент порядка . Так как – нормальная подгруппа группы порядка , то факторгруппа имеет порядок и по индукции в группе имеется подгруппа порядка для каждого . По теореме о соответствии в группе имеется подгруппа такая, что и . Теперь , где . Итак, в группе порядков соответственно.
Случай 2. Порядок центра группы не делится на .
Рассмотрим разложение группы в объдинение различных классов сопряжённых элементов
где
– класс сопряжённых с элементов. Различные классы сопряжённых элементов имеют пустое пересечение, а число элементов в классе равно индексу централизатора . Пусть
Централизатор каждого элемента из центра совпадает с группой . И обратно, если централизатор некоторого элемента совпадает с группой, то элемент попадает в центр . Поэтому из <1> получаем
где для каждого . Если все числа делятся на , то из <2> следует, что делится на , что противоречит рассматриваемому случаю. Итак, существует , где такое, что не делит . Поскольку то
где – целое число и не делит . Теперь к группе применима индукция. По индукции в группе существует подгруппа порядка для каждого Эта подгруппа будет искомой для группы .
Рассмотрим разложение группы на двойные смежные классы по подгруппам и :
Зададим отображение
переводящее элементы двойного смежного класса в элементы произведения подгрупп и . Легко проверить, что отоюражение взаимно однозначно, поэтому, получаем
где Так как есть подгруппа в , то по теореме Лагранжа делит и – целое число. Из <3> теперь получаем:
Сокращая обе части на получим:
Так как взаимно просто с , а – целое число, являющееся степенью , то в правой части <4> существует слагаемое, равное единице. Пусть например, , где . Тогда .
Пусть и – подгруппы порядка . По существует элемент такой, что . Так как , то .
Пусть – группа порядка – подгруппа порядка и – нормализатор подгруппы в группе . Рассмотрим разложение группы на двойные смежные классы по и :
Отображение