Курсовая работа: Полунормальные подгруппы конечной группы
поэтому
и . Следовательно, группа абелева. Теперь ясно, что – циклическая группа.
2. Полунормальные подгруппы
2.1 Свойства супердобавлений
Определение 2.1.1 Подгруппу, обладающую супердобавлением, называют полунормальной подгруппой. Таким образом, подгруппа группы называется полунормальной подгруппой, если существует такая подгруппа , что и – собственная подгруппа группы для каждой подгруппы из , отличной от .
Пример 2.1.2 Нормальные и квазинормальные подгруппы являются полунормальными и любые их минимальные добавления будут супердобавлениями.
Пример 2.1.3 В симметрической группе силовская –подгруппа является полунормальной подгруппой, но не квазинормальной.
Лемма 2.1.4 Если подгруппа полунормальна в группе и в группе нет собственных добавлений к , то квазинормальна.
Доказательство. Так как по условию все добавления к подгруппе совпадают с самой группой , то и супердобавлением к будет . Теперь из определения полунормальной подгруппы следует, что перестановочна со всеми собственными подгруппами группы .
Лемма доказана.
Введем следующие обозначения. Если – подгруппа группы , то – множество всех супердобавлений к подгруппе в группе . Ясно, что в точности тогда, когда не является полунормальной подгруппой.
Пусть и – подгруппы группы , и подгруппа нормальна в группе . Введём следующие обозначения:
– обычное теоретико множественное включение, то есть любая группа содержится в .
Запись
означает, что для любой подгруппы существует подгруппа такая, что содержится в .
Лемма 2.1.5 Если – полунормальная подгруппа группы и , то – полунормальная подгруппа группы и
Доказательство. Пусть . Тогда и – собственная подгруппа группы для любой подгруппы из , отличной от . Ясно, что для любого элемента из , а так как можно считать произвольной в подгруппой, отличной от , то – собственная подгруппа группы . Поэтому полунормальна в и – супердобавление к в группе , то есть . Отсюда следует, что