Курсовая работа: Полунормальные подгруппы конечной группы
Для получаем
т.е. . Обратно, если , то . Теперь и – силовские подгруппы в , которые по следствию 1.4 сопряжены в , т.е. существует элемент , такой, что . Теперь и , т.е.
Если
то и
Если , то пусть означает наивысшую степень , делящую порядок . По следствию 1.4 – порядок силовской –подгруппы из . Из следует, что
и
Если
то
и
Обратно, пусть
где , и . Тогда
Поскольку уже доказано, что
то , где
Теперь
и