Курсовая работа: Построение математической модели оптимального управления обеспечивающего мягкую посадку при
Ускорение силы тяжести для планеты g=1,62 м/с2 , величина с=3000 м/с.
Задание к курсовому проекту
1.) Составить гамильтониан Н, воспользовавшись необходимыми условиями оптимальности для задачи Майера.
2.) Из условия максимизации Н по u найти оптимальное управление.
3.) Получить каноническую систему уравнений и в результате прийти к краевой задаче, для которой в момент t=0 заданы компоненты x0 , x1 , x2 , а в момент t=T‑компоненты x1 , x2 , ψ0 .
4.) Из условия Н(Т)=0 получить соотношение для определения неизвестного времени Т.
5.) Произвести анализ необходимых условий оптимальности, начав с исследования возможности существования особого вырожденного управления, то есть случая, когда функция переключения
.
Доказать, что Кu не может обратиться в нуль на конечном интервале времени и, следовательно, особого управления в данной задаче не существует.
Показать, что Кu есть монотонная функция t.
Рассмотреть четыре возможных случая:
а) Ku >0 для всех ;
б) Ku <0 для всех ;
в) Ku >0 для , Ku <0 для ;
г) Ku <0 для , Ku >0 для .
Показать, в каких случаях (из физических соображений) мягкая посадка невозможна, в каком из реализуемых случаев расход топлива меньше.
Получить программу оптимального управления, когда до некоторого момента t1 управление отсутствует u*=0, а начиная с t=t1 , управление равно своему максимальному значению u*=umax , что соответствует минимальному расходу топлива.
6.) Решить каноническую систему уравнений, рассматривая ее для случаев, когда и управление u*=0, и когда , u*=umax .
Приравнивая х1 (Т) и х2 (Т) нулю, получить два уравнения относительно t1 и Т. Таким образом, краевую задачу свести к системе, состоящей из двух нелинейных уравнений относительно двух неизвестных t1 , Т. Составить программу расчета. Получив решение этой системы, решить полностью исходную задачу программирования оптимального управления мягкой посадкой КА на планету. В заключение следует построить фазовую траекторию спуска КА и определить конечную массу m(Т).
Выполнение задания курсового проекта
Нам известно, что
, где с – сила тяги двигателя,
m – масса космического аппарата;
– ускорение аппарата.
То есть, масса · ускорение = сумме сил, действующих на аппарат.
β – секундный расход массы m: .
Расход массы обеспечивает силу тяги двигателя (P=c·β), ее можно менять в пределах .
можно найти из исходных данных – выразив из отношения силы тяги к начальной массе Pmax /m(0):
;