Курсовая работа: Построение математической модели оптимального управления обеспечивающего мягкую посадку при
кг/с.
Наш критерий оптимизации . Введем принятые в исходных данных обозначения:
; .
Начальный момент времени t=0, конечный момент времени – момент посадки КА (момент столкновения с планетой) t=T.
;
Тогда критерий оптимизации:
;
. (Здесь .)
Теперь необходимо написать уравнение состояния системы. Для этого нужно ввести переменные состояния и входную переменную.
Порядок дифференциального уравнения n=3, отсюда 3 уравнения состояния:
;
;
.
Выберем управление:
;
Подставляем уравнения состояния, получим:
так как и , отсюда
;
;
.
Критерий оптимизации:
.
Введем переменные х0 и хn+1 (то есть х4 ).
, где t – текущее время.
.
Тогда основные уравнения состояния: