Курсовая работа: Представление функции рядом Фурье

Вторым непосредственным следствием является так называемый «принцип локализации».

Взяв произвольное положительное число , разобьем интеграл в (14) на два: . Если второй из них переписать в виде

то станет ясно, что множитель при синусе

является кусочно-непрерывной функцией от t в промежутке . В этом случае по лемме этот интеграл при стремится к нулю, так что и само существование предела для частичной суммы ряда Фурье и величина этого предела целиком определяется поведением одного лишь интеграла


Но в этот интеграл входят лишь значения функции f(x), отвечающие изменению аргумента в промежутке от до . Этим соображением доказывается «принцип локализации», состоящий в следующем:

Поведение ряда Фурье функции f(x) в некоторой точке зависит исключительно от значений, принимаемых этой функцией в непосредственной близости рассматриваемой точки, т. е. в сколь угодно малой ее окрестности.

Таким образом, если взять две функции, значения которых в произвольно малой окрестности совпадают, то как бы они не расходились вне этой окрестности, соответствующие этим функциям ряды Фурье ведут себя в точке одинаково: либо оба сходятся, и притом к одной и той же сумме, либо оба расходятся.

Представление функций рядом Фурье

Наложим на функцию f(x) более тяжелое требование, а именно—предположим ее кусочно-дифференцируемой в промежутке .

Тогда имеет место общая теорема:

Теорема. Если функция f(x) с периодом кусочно-дифференцируема в промежутке , то ее ряд Фурье в каждой точке сходится и имеет сумму

Эта сумма, очевидно, равна , если в точке функция непрерывна.

Доказательство. Отметим, что равенство (14) имеет место для каждой функции f(x), удовлетворяющей поставленным условиям. Если, в частности, взять , то , и из (14) получим, что


Умножая обе части равенства на постоянное число и вычитая результат из (14), найдем

для нашей цели нужно доказать, что интеграл справа при стремится к нулю.

Представим его в виде

(15)

где положено

(16)

если бы нам удалось установить что эта функция кусочно-непрерывна, то из леммы предыдущего параграфа следовало бы уже, что интеграл (15) имеет предел нулю при . Но в промежутке функция g(x) вообще непрерывна, за исключением разве лишь конечного числа точек, где она может иметь скачки—ибо такова функция f(x). Остается открытым лишь вопрос о поведении функции g(x) при .

Мы докажем существование конечного предела

;

положив тогда g(0)=K, мы в точке t=0 получим непрерывность, и применение леммы окажется оправданным. Но второй множитель в правой части равенства (16) явно имеет пределом единицу; обратимся к выражению квадратных скобках.

Пусть, для простаты, сначала точка лежит внутри промежутка, где функция f(x) дифференцируема. Тогда , и каждое из соотношений

К-во Просмотров: 404
Бесплатно скачать Курсовая работа: Представление функции рядом Фурье