Курсовая работа: Представление функции рядом Фурье

Таким образом, заданную в промежутке функцию при соблюдении условий оказывается возможным разлагать как по косинусам, так и по одним лишь синусам.

Особого исследования требуют точки и . Здесь оба разложения ведут себя по-разному. Предположим, для простоты, что заданная функция непрерывна при и , и рассмотрим сначала разложение по косинусам. Условие , прежде всего, сохраняет непрерывность при , так что ряд (21) при будет сходиться именно к . Так как, далее,


то и при имеет месть аналогичное обстоятельство.

Иначе обстоит дело с разложением по синусам. В точках и сумма ряда (23) явно будет нулем. Поэтому она может дать нам значения и , очевидно, лишь в том случае, если эти значения равны нулю.

Если функция задана в промежутке то, прибегнув к той же замене переменной, что и в предыдущем параграфе, мы сведем вопрос о разложении ее в ряд по косинусам

или в ряд по синусам

к только что рассмотренному. При этом коэффициенты разложений вычисляются, соответственно, по формулам

или

.

Примеры разложения функций в ряд Фурье

Функции, которые ниже приводятся в качестве примеров, как правило, относятся к классу дифференцируемых или кусочно-дифференцируемых. Поэтому сама возможность их разложения в ряд Фурье—вне сомнения, и на этом мы останавливаться не будем.

Все задания взяты из Сборника задач и упражнений по математическому анализу, Б. Н. Демидович.

№ 2636. Функцию разложить в ряд Фурье.

Так как функция является нечетной, то, следовательно, будет четной. Поэтому ее разложение в ряд Фурье содержит одни лишь косинусы.

Найдем коэффициенты разложения;

№ 2938. Разложить в ряд Фурье функцию . Изобразить этой функции и графики нескольких частных сумм ряда Фурье этой функции.

Функция нечетная, поэтому ее разложение будет содержать одни лишь синусы.


То есть, получается, что при четных значениях n коэффициент , а следовательно и все слагаемое, обращается в нуль. Поэтому суммирование идет только лишь по четным значениям n.

Ряд Фурье для этой функции примет следующий вид:

.

Ниже изображены графики функций и нескольких частных сумм ряда Фурье:

График функции , , и

К-во Просмотров: 403
Бесплатно скачать Курсовая работа: Представление функции рядом Фурье