Курсовая работа: Представления конечных групп
5) если – подгруппа группы , то
Подгруппа называется нормальной подгруппой группы , если для всех . Запись читается: » – нормальная подгруппа группы «. Равенство означает, что для любого элемента существует элемент такой, что .
Теорема. Для подгруппы группы следующие утверждения эквивалентны:
1) – нормальная подгруппа;
2) подгруппа вместе с каждым своим элементом содержит все ему сопряженные элементы, т.е. для всех ;
3) подгруппа совпадает с каждой своей сопряженной подгруппой, т.е. для всех .
Лемма. Пусть – подгруппа группы . Тогда:
1) ;
2) если и , то ;
3) – наибольшая подгруппа группы , в которой нормальна;
4) если , то . Обратно, если , то ;
5) для любого непустого подмножества группы .
Простая группа . В каждой группе тривиальные подгруппы (единичная подгруппа и сама группа ) являются нормальными подгруппами. Если в неединичной группе нет других нормальных подгрупп, то группа называется простой . Единичную группу считают непростой.
Представления конечных групп
1.1 Представления групп
Пусть – группа всех невырожденных матриц порядка над полем комплексных чисел. Если – произвольная группа, то ее (матричным) представлением называется любой ее гомоморфизм в
G,
такой, что
,
(единичная матрица),
. Число n называется степенью этого представления. Если гомоморфизм A иньективен, то представление называется точным .
Пример 1.1 Отображение, переводящее каждый элемент группы в , является представлением степени . Оно называется тождественным представлением группы и обозначается через .
Пример 1.2 Если – некоторое представление группы , то для каждой невырожденной матрицы отображение также является представлением этой группы.
Пусть и – два представления группы . Если существует невырожденная матрица , такая, что что
,
то представления и называются эквивалентными . Тот факт, что представления и эквивалентны, мы будем обозначать так: . Отношение определяет классы эквивалентных представлений группы .
Пример 1.3. Пусть – симметрическая группа степени . Для элемента
через обозначим матрицу, строка которой имеет вид , где 1 стоит на месте. Другими словами,