Курсовая работа: Представления конечных групп

Тогда, положив , получаем

Поскольку , как и , пробегает группу , то

Предположим, что и неэквивалентны. Тогда в силу леммы Шура . Отсюда для -го элемента матрицы получаем

В частности, если взять для некоторой пары и в остальных случаях, то

Пусть теперь . Тогда в силу теоремы 3.2 для некоторого . При этом -ый элемент матрицы равен


где и для . Вычислив след матрицы

мы получаем (здесь – степень представления ), откуда

Пусть для некоторой пары и , если или . Тогда

Тем самым мы получаем следующее утверждение.

Теорема 4.3. Пусть – группа порядка g.

(1) Пусть – неприводимое представление группы степени . Тогда

(2) Пусть – неприводимое представление, не эквивалентное представлению . Тогда


Пусть – характеры представлений и . Положив в предыдущей теореме и просуммировав по , мы получаем теорему.

Теорема 4.4. (Первое соотношение ортогональности для характеров.) Пусть – группа порядка g.

(1) Если – неприводимый характер группы , то

(2) Если – характеры неэквивалентных неприводимых представлений группы , то

Отметим, что для всех , поскольку теорема 2.3 утверждает, что эквивалентно некоторому унитарному представлению и потому

К-во Просмотров: 469
Бесплатно скачать Курсовая работа: Представления конечных групп