Курсовая работа: Применение методов моделирования к электротехническим задачам
Уравнение, описывающее рассматриваемый физический процесс, имеет следующий вид
(2.1)
Перепишем уравнение (2.1) в виде, который позволяет определить все входящие в него величины в относительных единицах
. (2.2)
Запишем формулы размерностей для всех входящих в выражение (2.2) величин
(2.3)
Прологарифмируем полученные уравнения системы (2.3).
(2.4)
Из коэффициентов уравнений системы (2.4) составим матрицу размерностей
(2.5)
2.2 Определение числа независимых параметров процесса и числа возможных форм записей критериев подобия
Для определения количества независимых параметров процесса необходимо рассчитать определители, составленные из строк и столбцов матрицы размерностей, порядка q, q-1 и т. д. Количество основных единиц измерения будет равно порядку первого неравного нулю определителя.
Из матрицы размерностей (2.5) мы можем составить следующее число определителей четвертого порядка
.
Все определители четвертого порядка равны нулю по свойству определителя (если два любых столбца или строки определителя равны или пропорциональны друг другу, то определитель равен нулю), т.к. первый и второй столбцы пропорциональны. Следовательно, количество независимых единиц меньше четырех. Необходимо посчитать все возможные определители третьего порядка. При составлении определителей третьего порядка следует учесть чередование не только строк, но и столбцов. Общее число определителей третьего порядка можно вычислить по формуле
.
Из расчетов определителей третьего порядка (см. ПРИЛОЖЕНИЕ) видно, что 52 определителя третьего порядка неравны нулю, что указывает на то, что число независимых единиц измерения из девяти всего три, а количество возможных форм записи равно пятидесяти двум.
2.3 Определение первой формы записи критериев подобия
Возьмем определитель третьего порядка неравный нулю
В качестве независимых единиц измерения выступают [Um 0 ], [R10 ], [L10 ]. Остальные 6 единиц измерения будут зависимы от них, и их можно представить
Рассчитаем значения x1 …x15
, , ;
, , ;
, , ;
, , ;
, , .
Dis - определитель третьего порядка, каждый из которых получается заменой в определителе Di-ой строки на строку s в матрице размерностей, соответствующей параметру, для которого определяется показатель степени. Рассчитаем искомые определители.